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BACKGROUND: Next-generation sequencing (NGS) tech-
nologies are being used to predict antimicrobial resistance.
The field is evolving rapidly and transitioning out of the
research setting into clinical use. Clinical laboratories are
evaluating the accuracy and utility of genomic resistance
prediction, including methods for NGS, downstream bio-
informatic pipeline components, and the clinical settings
in which this type of testing should be offered.

CONTENT: We describe genomic sequencing as it pertains
to predicting antimicrobial resistance in clinical isolates
and samples. We elaborate on current methodologies and
workflows to perform this testing and summarize the cur-
rent state of genomic resistance prediction in clinical set-
tings. To highlight this aspect, we include 3 medically
relevant microorganism exemplars: Mycobacterium tuber-
culosis, Staphylococcus aureus, and Neisseria gonorrhoeae.
Last, we discuss the future of genomic-based resistance
detection in clinical microbiology laboratories.

SUMMARY: Antimicrobial resistance prediction by geno-
mic approaches is in its infancy for routine patient care.
Genomic approaches have already added value to the cur-
rent diagnostic testing landscape in specific circumstances
and will play an increasingly important role in diagnostic
microbiology. Future advancements will shorten turn-
around time, reduce costs, and improve our analysis and
interpretation of clinically actionable results.

Antimicrobial resistance is one of the single greatest
concerns for human health globally (1). In the setting of
infection, clinical microbiology laboratories are tasked

with generating clinically relevant results, including an-
timicrobial susceptibility profiles, to guide patient care
decisions. Antimicrobial susceptibility testing has
evolved over the years, and now laboratories have access
to genomic approaches like whole-genome sequencing
(WGS) and metagenomic next-generation sequencing
(mNGS). We review genome-based antimicrobial resis-
tance prediction in relation to clinical microbiology:
how it is performed, when it may be useful, and what
opportunities exist for the future.

Methodology

OVERVIEW

The first step of sequencing should be clearly identifying
the goal of the analysis. This review is focused on geno-
mic prediction of antimicrobial resistance. Another early
decision point is choosing the appropriate next-
generation sequencing (NGS) technology. The most
prevalent in use is the second-generation short-read se-
quencing technology (i.e., Illumina) or third-generation
long-read sequencing technology (i.e., PacBio, Oxford
Nanopore). Generally, Illumina sequencing has higher
accuracy of reads (approximately 1% error rate) than
PacBio (approximately 10% error rate) or Oxford
Nanopore (approximately 5% error rate) but at the ex-
pense of length, with both long-read sequencing tech-
nologies often able to produce contiguous reads >10 kb
in length (2). In addition, they differ in turnaround
time: Illumina sequencing runs generally take at least
24 hours, whereas PacBio runs are often 0.5–10 hours,
and a major advantage of Nanopore systems is the real-
time results reporting. Typically, long-read sequencing
technologies have a higher cost per base (3). These se-
quencing technologies, their respective library prepara-
tion methods, and metagenomic alternatives are
discussed below and summarized in Fig. 1. Following
any sequencing, data analysis typically includes in silico
refinement (performed computationally) of partial or
completely assembled bacterial genomes, which can
then be annotated for antibiotic resistance genes
(ARGs). Table 1 includes a list describing examples of
commonly used bioinformatic software in microbiology
that have been reviewed comprehensively (4).

WGS AND ASSEMBLY

For culture-dependent Illumina sequencing, genomic
DNA representing the microbial chromosome and

aDepartment of Pathology and Immunology, Washington University School of Medicine,
St. Louis, MO; bThe Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO; cDepartment of Molecular
Microbiology, Washington University School of Medicine, St. Louis, MO; dDepartment of
Biomedical Engineering, Washington University in St. Louis, St. Louis, MO;
eDepartments of Pediatrics and Medicine, Washington University School of Medicine, St.
Louis, MO.

*Address correspondence to this author at: Department of Pathology and Immunology,
Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8118,
St. Louis, MO 63110. Fax 314-362-1461; e-mail cburnham@wustl.edu.
†Contributed equally.

Received April 27, 2020; accepted July 1, 2020.
DOI: 10.1093/clinchem/hvaa172

VC American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com. 1

Clinical Chemistry 00:0 Review1–12 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/advance-article/doi/10.1093/clinchem
/hvaa172/5904416 by W

ashington U
niversity at St Louis user on 17 Septem

ber 2020

mailto:cburnham@wustl.edu
mailto:cburnham@wustl.edu


plasmids can be isolated using multiple different meth-
ods that may require species-specific optimization (5).
Next, DNA is sheared typically using enzymatic diges-
tion or sonication into fragments of specific size depend-
ing on the desired read length (6). Enzymatic shearing
methods have been demonstrated to be more rapid than
manual protocols; however, they may lead to sequence
read bias for coverage of genomes with a high percentage
of GC content, such as Mycobacterium tuberculosis, or
AT content, such as Plasmodium falciparum (7–9).
Following the shearing process, the DNA is modified to
include Illumina adapters, which are important for
binding to the flow cell, and unique bar codes (or in-
dexes) ligated onto the ends of the DNA (6). The
unique bar codes enable multiplexing of hundreds of
bacterial samples together in a typical sequencing lane,
drastically reducing the cost per genome assembly (6).

After the sequencing libraries are prepared and pooled,
they can be submitted for a sequencing lane. The choice
of specific Illumina technology depends primarily on
the desired read length (most often 50-, 75-, 150-, or
300-bp length) and desired number of reads. Following
the completion of the sequencing run, the reads can be
demultiplexed by bar code, and then the bar codes and
adapter sequences can be computationally removed by
programs such as trimmomatic or fastp (10, 11). At this
stage, read quality can also be evaluated and low-quality
reads discarded by programs such as FASTQC. These
filtered reads can be used as input for de Bruijn graph–
based assembly programs such as SPAdes,
SOAPdenovo, or Velvet, which will assemble the reads
into larger contiguous sequence fragments (contigs) and,
depending on the program, order the contigs into scaf-
folds (12–14). A metacomparison of multiple de novo

Fig. 1. Overview of culture-independent (upper) and -dependent (lower) sequencing approaches. Culture-independent techni-
ques rely on mNGS and are capable of sequencing clinical specimens containing human and microbial DNA. After sequencing
and quality processing, this information can be used to identify bacteria within genus or species taxonomic resolution and iden-
tify ARGs. Culture-dependent techniques rely on sequencing a cultivated organism but have the benefit of confirming genomic
resistance prediction with true phenotypic resistance.
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assemblers found that no single program was superior
regarding multiple quality metrics (i.e., longest contig,
number of contigs, N50 (the shortest contig length
needed to cover 50% of the genome), indicating that
multiple tools could be used for each specific study (15).
One drawback of this sequencing technology is that the
microbial chromosome and large plasmids are likely to
be assembled into hundreds of scaffolds, with assembly
breaks at long repetitive genomic regions; however, a
growing number of specialized programs are emerging
that attempt to identify and annotate plasmidic regions
from unassembled short-read data (e.g., PlasmidSeeker
and plasmidSPAdes) (16, 17).

For long-read sequencing (defined broadly in this
review as >500 bases), considerable additional care is
often warranted during the genomic DNA extraction
process to shear the DNA properly; many extraction
methods optimized for short-read sequencing result in
highly fragmented DNA (18). Another important
difference is to ensure that plasmid DNA is nicked or
decircularized for long-read sequencing; otherwise, it
may not be included in the analysis. Following

sequencing of the high-molecular weight DNA, initial
quality assessment can be used to determine the average
length of the sequence insert (19). The long reads can
be assembled by themselves or in conjunction with short
reads (e.g., Illumina) in a hybrid assembly that com-
bines the accuracy of Illumina reads with the contiguous
scaffolding of long Nanopore or PacBio reads (19, 20).
Given that long-read sequencing will often produce
reads that are sufficient in length to span repeat regions,
a successful long-read sequencing run will produce a
completely closed chromosome and closed plasmids if
they are also present in the organism (21). The
MinION sequencer (Oxford Nanopore Technologies)
was found to have high reproducibility when an identi-
cal Bacillus anthracis strain was sequenced by 2 different
laboratories from the Public Health Agency of Canada,
providing strength for the use of this technology by
multiple groups during an outbreak investigation (22).

Differentiation between plasmid-borne and chro-
mosomally located ARGs is important for identifying
the horizontal gene transfer potential of ARGs and in-
fection control (23). A caveat with realizing this

Table 1. Highlighted sequencing analysis pipeline programs.

Software Utility Input Output

FASTQC QC check of sequence data Raw FASTQ files Report on GC%, adapter

contig, phred scores

Kraken Taxonomic classification Processed FASTQ files Relative abundance of

microbial taxa present

SPAdes Genome assembly Processed FASTQ files Scaffolds, contigs,

assembly graph

Velvet Genome assembly Processed FASTQ files Scaffolds, contigs,

assembly graph

Resfinder Antimicrobial resistance

detection

Scaffolds or contigs FASTA file Report on presence of

ARGs or alteration in

target sequences

Bowtie Sequence alignment Processed FASTQ files Files showing

alignment information

and unaligned or

aligned reads

Prokka Genome annotation Scaffolds or contigs FASTA file Protein coding and RNA

coding information in

multiple filetypes

ResFams Antimicrobial resistance

detection

Scaffolds or contigs FASTA file Report on presence of

ARGs
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advantage is that considerable effort is required during
the genomic DNA extraction protocol to not shear the
DNA (21). A major advantage of the Oxford Nanopore
MinION system is that the reads can be analyzed while
the sequencing run is ongoing, providing for an ex-
tremely fast turnaround time that holds potential prom-
ise for the utility of this technology in the point-of-care
diagnostic setting (24, 25). Conversely, the major
advantages of Illumina sequencing are that it is cost-
effective and the library preparation and genomic DNA
extraction are more straightforward and less dependent
on a skilled worker for extraction (26). However, these
reads are too short for resolving chromosome and plas-
mid sequences or producing a single chromosomal con-
tig. Illumina sequencing can have greater batch sizes,
which may be compatible with current batching of mo-
lecular tests in clinical laboratories, but this would have
a negative impact on turnaround time (interval from
sample received by the laboratory to a result in the med-
ical record) (26).

ARG ANNOTATION

Following production of whole-genome scaffolds or
complete chromosomes and plasmids, multiple pro-
grams can be used to computationally identify ARGs.
Typically, each program works by first identifying open
reading frames or by accepting as input a multi-FASTA
(file format containing multiple nucleotide sequences in
the FASTA format) composed of the open reading
frames within a bacterial genome. ResFinder is an easy-
to-use program hosted on a web server that can also be
downloaded for batch use on Linux systems (27). It is
updated with verified ARGs multiple times per year and
can be used to identify acquired ARGs (including most
antibiotic-modifying enzymes) but not multicomponent
efflux pumps or modifications of antibiotic resistance
targets. However, the same authors have also created
PointFinder, which can be used to identify resistance-
conferring single-nucleotide polymorphisms (SNPs) in
antibiotic-determining regions for a variety of gram-
negative and gram-positive human pathogens (28). The
Comprehensive Antibiotic Resistance Database has also
produced a tool (Resistance Gene Identified) for annota-
tion of genomes that includes acquired ARGs, polymor-
phisms in resistance-determining regions, and
multicomponent efflux pumps (29, 30). Both programs
rely on BLAST alignment (Basic Local Alignment
Search Tool, program that identifies sequence similarity
of nucleotide sequences) of input sequences against a cu-
rated database of known ARG sequences and thus are
rapid and specific. However, one limitation is that genes
that are divergently related to previously discovered
ARGs may not be considered. To address this issue with
remote-homolog detection, ResFams is an ARG-
identification tool that relies on hidden Markov models

for annotation of ARGs (31). This approach has been
useful for identifying a novel class of tetracycline-
inactivating enzymes initially from soil metagenomes
that have now been identified in Escherichia coli and
Acinetobacter baumannii isolates from humans, animals,
and meat in China (32–34). This finding is particularly
important under the One Health concept because bacte-
ria in human-adjacent environments may transfer ARGs
to those that are more closely associated with humans
(35). The aforementioned identification programs rely
on rules-based classification in which the presence of the
determinant (either an SNP in a core gene or acquired
resistance gene) indicates resistance (36). In certain
studies, this analysis has proved superior to advanced
machine learning methods at prediction of antimicrobial
resistance (37). However, because the critical limitation
of a rules-based approach is that it is unable to predict
novel resistance, an ongoing avenue of research is to de-
velop accurate model-based methods for prediction of
phenotypic resistance. Two major strategies for this ap-
proach rely on variant calling of genetic diversity within
a species- and population-level pan-genome analysis
(38, 39). A continuing challenge in the application of
NGS methods in the clinic is accurate inference of phe-
notypic susceptibility from these resistance predictions
and conveying the information appropriately to clini-
cians. Current approaches largely resemble traditional
susceptibility reporting as susceptible, intermediate, or
resistant.

METAGENOMIC SEQUENCING

Rather than sequencing pure cultures of an isolated mi-
croorganism, an alternative approach is to perform
mNGS directly from a clinical sample, capturing the en-
tirety of the pathogen nucleic acid, other microorganism
nucleic acid, and the patient’s human nucleic acid (40).
A major advantage of this unbiased approach to
pathogen detection is forgoing culture bottlenecks; ac-
cordingly, interest in the application of clinical metage-
nomic sequencing is growing (41–43). This approach
can be extremely advantageous for slowly growing
pathogens such as Mycobacterium species (44). A pro-
spective analysis of cerebrospinal fluid for metagenomic
sequencing found that 22% (13/58) of infections could
be identified by sequencing but not traditional labora-
tory methods (42). In addition, metagenomic sequenc-
ing provided auxiliary benefits to clinicians including
identification of Klebsiella aerogenes (formerly
Enterobacter aerogenes) ARGs and prediction of drug re-
sistance by HIV-1 (42). However, a drawback is that
this would prevent validation of ARG-based resistance
prediction because there is no isolate for phenotypic sus-
ceptibility testing. Moreover, for cases in which unique
reads for multiple suspected pathogens have been
detected, clinical interpretation of the findings can be
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challenging (45). Previous implementation of mNGS
pipelines have required knowledge of bioinformatics,
which may not be accessible in some laboratories. As a
means to circumvent this technological hurdle, user-
friendly commercial services such as IDbyDNA,
CosmosID, and One Codex are emerging (46). It was
demonstrated that these platforms may differ in identifi-
cation of low-abundance organisms but were similar
for the most prevalent organisms within a previously
investigated sample of prosthetic joint fluid (46).
Other commercial solutions such as Karius are being
used clinically (47).

Similar to genomic analysis, the initial step is to ob-
tain the total DNA from the sample, representing the
microbial DNA of interest and human DNA from con-
taminating cells. Most work on the use of metagenomic
diagnosis relies on short Illumina reads; however, a
number of studies are emerging on the use of long-read
technology. One investigation found that Nanopore-
based metagenomic sequencing for lower respiratory
tract infections had high sensitivity (96.6%) but low
specificity (41.7%) for pathogen detection (48). One al-
lure is the extremely rapid turnaround time and small
instrument size of Oxford Nanopore sequencing. This
has enabled rapid identification of suspected pathogens
from contaminated orthopedic devices (49). A drawback
of NGS technology, and especially Nanopore sequenc-
ing, is the requirement for data storage. One solution
includes the use of compression algorithms like pico-
pore, which can drastically reduce the total file size (50).
In addition, it may be up to the laboratory director to
decide on a fixed cutoff for discarding processed reads
after an allotted time. Following sequencing, human
DNA is computationally separated (and typically dis-
carded) so that analysis can be performed on the remain-
ing microbial reads (49). These reads can then be used
for species classification via tools such as MetaPhlan2,
Kraken, or Centrifuge (51–53). Furthermore, the reads
can be mapped to databases of known ARGs so that the
antibiotic resistance potential of the identified organism
may be inferred. Moreover, because the data obtained
from direct-sequencing technologies likely contain hu-
man reads, it is important that hospitals and laboratories
spend adequate resources necessary to ensure that this
health information is secure and deidentified. Last, a
major limitation of mNGS is the higher limit of detec-
tion for ARGs in complex specimens (there are technical
challenges to obtaining the necessary reads among a
plethora of DNA).

CURRENT STATE OF GENOMIC PREDICTION IN CLINICAL
LABORATORIES

To date, most clinical microbiology laboratories predict
antimicrobial resistance using a combination of conven-
tional culture-dependent phenotypic methods (e.g.,

broth microdilution, disk diffusion, gradient diffusion,
automated systems) and culture-independent rapid mo-
lecular methods. This approach maintains the historical
outcomes data and species breadth of conventional test-
ing while offering shorter turnaround times using mo-
lecular methods for a subset of targeted pathogens. It is
worth noting that this approach is imperfect. For exam-
ple, rapid molecular testing is available for only a small
subset of prominent resistance markers from a relatively
limited number of clinical pathogens. Any culture-
dependent method also has limitations: reliance on
in vitro growth, extended turnaround times for slow-
growing microbes, bias toward predominant microbial
populations in a culture, and risk of contamination
overgrowth. Even so, the field of clinical microbiology
has been somewhat slow to implement genomic-based
resistance prediction. Major points of contention in-
clude turnaround time and added costs compared with
conventional methods, as well as lack of robust out-
comes data demonstrating clinical utility. However,
studies have shown that these factors may be less con-
cerning than initially theorized (54). Another valid point
is the lack of robust predictive tools for a substantial
number of pathogens, particularly gram-negative ones
(e.g., Pseudomonas aeruginosa).

There are advantages for a clinical microbiology
laboratory in implementing genomic-based resistance
detection. First, turnaround times could be improved
for slowly growing pathogens. Second, laboratories may
be able to test a wider breadth of microbes. This could
include fastidious bacteria and other types of microbes
like fungi or parasites. Third, clinical laboratories could
determine isolate relatedness. This would be important
for infection control and prevention practices, assess-
ment of failed therapy versus new infection, and identi-
fication of contamination in the laboratory. Such
isolate-relatedness data could also be sent to public
health directly instead of sending an isolate, which may
result in more rapid detection of outbreaks. In addition,
combination efforts with WGS in conjunction with
phenotypic analysis can be used to identify novel resis-
tance determinants, as shown by recent studies of
Elizabethkingia and Salmonella (55, 56). Last, genomic
data can be reviewed retrospectively when new drugs
come to market to predict efficacy without retesting. It
is worth noting that we may not fully understand the
benefits and limitations of genomic resistance prediction
until it is implemented in clinical microbiology labora-
tories and directly compared with the status quo.

MICROBE VIGNETTES

Next we describe the role of genomic-based resistance
prediction using 3 microorganisms. The first example is
M. tuberculosis, for which genomic methods will likely
displace current testing in the near future. The
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subsequent exemplars Staphylococcus aureus and Neisseria
gonorrhoeae depict some of the limitations preventing
genomic resistance prediction from displacing current
technologies.

Mycobacterium tuberculosis M. tuberculosis is a slowly
growing, acid-fast bacillus that is notoriously challeng-
ing to treat and is of great concern for drug resistance.
The 2019 CDC Antibiotic Resistant Threat report
listed drug-resistant M. tuberculosis in the category of
“Serious Threat” (1). Multidrug-resistant tuberculosis
made up 1.9% of the 9029 US cases in 2018 but is
much more common globally. Treating multidrug-
resistant tuberculosis requires timely drug-susceptibility
testing; however, culture-based drug-susceptibility test-
ing takes weeks to complete and is available only in se-
lected, specialized laboratories. This lengthy turnaround
time has led the field toward rapid molecular resistance
prediction for M. tuberculosis.

Pyrosequencing and Sanger sequencing have been
used for years to predict drug resistance in M. tuberculo-
sis (57). These first-generation sequencing technologies
use a targeted approach to detect mutations in predeter-
mined genomic resistance markers (Fig. 2C). A major
advantage of targeted sequencing is that it can be per-
formed directly on processed sputum sediments, sub-
stantially reducing turnaround times. One study found
that effective patient therapies were initiated 5 weeks
earlier for MDR infections due to pyrosequencing (58).
One limitation of sequencing directly from sputum
sediments is reduced sensitivity compared with culture.
Another limitation of targeted sequencing is the inabil-
ity to detect off-target (often novel) resistance markers.
This is less of a concern in M. tuberculosis because it
does not readily acquire horizontally transferred resis-
tance mechanisms like other clinically relevant microor-
ganisms (e.g., gram-negative bacilli). Other limitations
of Sanger sequencing and pyrosequencing are expense,
minimal detection of heteroresistant populations, and
widespread phasing out of first-generation sequencing
technologies.

NGS technologies have been frequently used to
predict drug resistance (36, 59, 60). To date, the major-
ity of genomic-based resistance prediction has focused
on culture-dependent WGS. This approach offers com-
prehensive data for resistance profiling and epidemiolog-
ical purposes (36, 61, 62). However, the lengthy
turnaround time is similar to that of phenotypic drug-
susceptibility testing. The largest culture-dependent
WGS study is from Comprehensive Resistance
Prediction for Tuberculosis: an International
Consortium (CRyPTIC) (63). CRyPTIC evaluated
>10,000 isolates and found genotypic predictions for
first-line drugs correlated with phenotypic susceptibility

(>90%). The ability to predict resistance in second-line
drugs was less robust (<90% accuracy for some drugs).
National public health institutions in the United
Kingdom and the United States also perform culture-
dependent WGS on isolates from domestic tuberculosis
cases. These remarkable surveillance data sets promise to
strengthen our understanding of current genomic resis-
tance markers and may uncover novel resistance mecha-
nisms. Today, few clinical laboratories have the
resources, specimen volume, and turnaround tolerance
to justify culture-dependent WGS for M. tuberculosis
drug-susceptibility testing.

An alternative approach to detecting M. tuberculosis
drug resistance is culture-independent, targeted se-
quencing from processed sputum (44, 64). This ap-
proach has a rapid turnaround time and decreased cost
because only relevant genomic regions are sequenced.
This approach also significantly increases coverage
depth, which is particularly important for detecting het-
eroresistant populations in M. tuberculosis. A limitation
of targeted sequencing is low sensitivity due to the low
bacterial biomass in clinical samples. Another limitation
of targeted sequencing is missing an unforeseen resis-
tance mechanism. The aforementioned epidemiological
work by national surveillance programs should ensure
that targeted sequencing is focused on specific genomic
resistance markers. Another limitation of targeted se-
quencing is that most studies to date are from research
settings, and clinical implementation may require fur-
ther research and development, including validation,
competency assessments, and quality assurance and QC
measures. It is likely that, in the near future, clinical lab-
oratories in MDR-prevalent areas will implement
culture-independent, targeted sequencing to provide
clinicians with rapid drug-susceptibility testing.

Oxford Nanopore is a long-read sequencing tech-
nology that has also been used for M. tuberculosis
(65, 66). This technology excels at homopolymer
stretches, has a low cost per run, and is highly portable.
The major limitation of Nanopore is the high sequenc-
ing error rate, making it less suitable for the single-
nucleotide mutations and heteroresistant populations in
M. tuberculosis. Nanopore technology must advance be-
fore it can be a practical option for clinical laboratories.

Traditional M. tuberculosis susceptibility testing will
likely be displaced by sequencing-based resistance predic-
tion. This approach is especially feasible for M. tuberculo-
sis because of the limited number of resistance
determinants, many of which are well characterized
(Fig. 1C). Strong evidence suggests that for the majority
of isolates, data are comparable to phenotypic testing but
with a markedly reduced turnaround time. However,
noteworthy phenotypic and genotypic discrepancies have
been reported for the key antituberculosis drugs isoniazid
and rifampin, even in multidrug-resistant tuberculosis
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(67–69). Because patients receive a multidrug treatment
regimen, it is difficult to determine the clinical impact of
discrepant results, and further work is required to under-
stand the cause of these discrepancies.

Staphylococcus aureus S. aureus is a Gram-positive op-
portunistic microbe that is a common skin colonizer
but can also cause serious health conditions including
bacteremia, endocarditis, pneumonia, skin and soft

tissue infection, and osteomyelitis. Treating S. aureus
infections is often complicated by antibiotic resistance
(see highlighted resistance determinants in Fig. 2A).
Important resistance types include methicillin-resistant
S. aureus, vancomycin-intermediate S. aureus, and
vancomycin-resistant S. aureus. Clinical microbiology
laboratories characterize S. aureus isolates using a combi-
nation of culture-dependent phenotypic antimicrobial
susceptibility testing methods, specialized media (e.g.,
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Fig. 2. Highlighted resistance determinants in S. aureus (A), N. gonorrhoeae (B), and M. tuberculosis (C). Because genes
with target alterations are predominantly found within the core genome of bacterial pathogens, genomic-based resistance
predictions are able to identify known SNPs within most isolates of a given species. Conversely, prediction of genes within the
accessory genome for organisms (e.g., genes that encode efflux pumps or antibiotic altering enzymes in S. aureus or
N. gonorrhoeae) may work on a presence/absence basis if the ARGs are strong determinants for phenotypic resistance. Colors
link antibiotics to their respective resistance determinants. Mechanisms of target alteration and inhibition of protein synthesis
are indicated by asterisks and carets, respectively.
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chromogenic agar and mannitol salt agar), and rapid
phenotypic tests (e.g., PBP2a to detect methicillin resis-
tance) (70). Rapid molecular tests to detect methicillin-
resistant S. aureus have also become common for nares
surveillance screening and positive blood cultures. All
of these current approaches have been developed and
optimized for high testing volumes and timely results.

The overwhelming majority of sequencing in
S. aureus has been for epidemiological purposes, but
NGS technologies have been used for resistance predic-
tion (71–73). In general, there is a strong correlation be-
tween WGS resistance prediction and traditional
phenotypic testing for S. aureus. Gordon et al. (72) used
several hundred isolates and found >95% agreement
between WGS and routine clinical laboratory testing
(using automated systems and disk diffusion) for 12 an-
timicrobial agents. Resistance was predicted by a self-
developed tool that searched genetic mechanisms
reported in clinical isolates rather than existing resis-
tance databases. Babiker et al. (73) found that genomic
resistance prediction for methicillin, vancomycin, line-
zolid, tetracycline, gentamicin, trimethoprim–sulfa-
methoxazole, and rifampin all had 100% concordance
with disk diffusion results. Mason et al. (74) used 3 pro-
grams (GeneFinder, Mykrobe, and Typewriter) to assess
84 resistance determinants and found highly similar re-
sistance predictions (99.5%) that also correlated very
well (98.3%) to the laboratory phenotype (determined
by automated systems and disk diffusion) of >1300 S.
aureus isolates. vanA and vanB were not found in any
teicoplanin-resistant S. aureus genomes from India,
indicating that these proxies for vancomycin resistance
cannot predict teicoplanin resistance. Of note, vanB-
harboring isolates are often teicoplanin susceptible (75).
However, the authors identified a number of mutations
including some previously reported in the teicoplanin-
resistance operon genes tcaA and tcaB (which encode for
a zinc finger domain membrane-associated protein and
Bcr/CflA family efflux transporter, respectively) (76).
Bradley et al. (77) developed a software package using
Illumina reads as input that had a 100% positive predic-
tive value for detection of methicillin and erythromycin
resistance in S. aureus. The lowest positive predictive
value obtained for this package was 91.1% for fusidic
acid (77).

Implementation of genomic sequencing approaches
for S. aureus is tractable because most resistance is well
characterized, and this technology could detect clones in
outbreaks (78). Data could then be shared with public
health laboratories instead of an isolate, reducing unnec-
essary testing and shipping hazards. Hospital-acquired
infections are a serious threat to patient health, and pre-
vention is financially incentivized for patients and
hospitals.

Displacement of current S. aureus testing in clinical
laboratories by genome sequencing has obvious chal-
lenges. There is a lack of literature that clearly demon-
strates clinically relevant WGS superiority (i.e.,
improvement of turnaround time, cost, or susceptibility
prediction) over the aforementioned rapid susceptibility
prediction methods. WGS can struggle with pertinent
resistance mechanisms in S. aureus: plasmid-mediated
resistance mechanisms (particularly short-read sequenc-
ing), altered expression of resistance genes (e.g., encod-
ing efflux pumps or some oxacillinase genes), and
uncharacterized mechanisms of resistance (72).
Substantial testing and personnel resources would also
be needed to accommodate such a large shift to sequenc-
ing because S. aureus is one of the most commonly en-
countered isolates in a clinical microbiology laboratory.
Although genomic-based resistance prediction could be
used for S. aureus, it is unlikely to displace current
approaches.

Neisseria gonorrhoeae Drug-resistant N. gonorrhoeae
was categorized as an “Urgent Threat” in the 2019
CDC antibiotic-resistance threat report (1); this cate-
gory is the highest priority assigned. Given the fastidious
nature of N. gonorrhoeae, diagnosis of active infection
has relied on nucleic acid detection methods (nucleic
acid amplification tests [NAATs]) (79). Although
NAAT use has shown high sensitivity and quick turn-
around time for detection of N. gonorrhoeae, it does not
provide information on the burden or repertoire of
ARGs and may cross-react with commensal Neisseria
(79). Therefore, a plethora of efforts have been under-
taken to use NGS methods for the detection of N. gon-
orrhoeae and characterization of ARGs and antibiotic
resistance determining SNPs. Figure 2B highlights some
of the acquired and intrinsic antibiotic-resistance deter-
minants in N. gonorrhoeae that are potential targets for
NGS-based prediction sets.

The fastidious nature of N. gonorrhoeae has
complicated development of WGS-based diagnosis and
antibiotic resistance prediction, given the inability to
produce ample, pure cultures. However, recovery of
N. gonorrhoeae has been shown to be 371% greater
using the BD Kiestra Total Laboratory Automation
System compared with conventional culture-based
methods (80). Improved routine culturing may provide
new opportunities for using genomic techniques to
characterize the ARG repertoire of N. gonorrhoeae.
Population-level genome-wide association studies could
lead to identification of novel resistance determinants in
N. gonorrhoeae, as was done previously to identify novel
resistance determinants in the swine pathogen Serpulina
(formerly Brachyspira) hyodysenteriae (81, 82). Isolates
recovered from a BD Kiestra at Barnes-Jewish Hospital
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in the high-incidence setting of St. Louis (Missouri)
showed a strong association between intracity phyloge-
netic clade-specific resistance determinants, particularly
the blaTEM-1b b-lactamase and the tet(M) tetracycline re-
sistance gene (83). Continued surveillance of N. gonor-
rhoeae is especially important, given the species’ frequent
recombination with other Neisseria and its natural com-
petence (84). Because certain antibiotic resistance pheno-
types could be related to transcriptional change rather
than genomic mutations or acquisition of dedicated
ARGs, analysis of N. gonorrhoeae mRNA transcripts via
RNA sequencing or quantitative reverse transcription
PCR holds promise for prediction of azithromycin resis-
tance (85). Availability of Nanopore sequencing is in-
creasing, and there is strong interest in application of this
technology for point-of-care testing. A modeling analysis
found that point-of-care testing for N. gonorrhoeae re-
quired information on suspected antibiotic resistance to
prevent spread (86). Nanopore sequencing can provide
rapid identification of all ARGs within a N. gonorrhoeae
genome or metagenome infection, which NAAT testing
is not able to achieve; however, before widespread imple-
mentation, improvements in the accuracy of Nanopore-
based reads will need to occur (87, 88).

Given the difficulty of culturing N. gonorrhoeae,
the use of WGS is an enticing alternative to predict
antibiotic resistance. This approach may be particularly
feasible for quinolone antibiotics; a logistic regression
approach found that the S91 and D95 mutations in
GyrA protein provided 98.6% sensitivity and 91.4%
specificity for predicting quinolone resistance (89).
Because ciprofloxacin is no longer the current treatment
for N. gonorrhoeae infections, the prediction of frontline
azithromycin or ceftriaxone resistance is more relevant
for immediate clinical application. The same logistic re-
gression method found that although the C261T or
A2059G mutation in greater than or equal to two 23S
rRNA alleles had a perfect specificity (100%) for azith-
romycin resistance, it had a low sensitivity (65.8%)
(89). One problem for prediction of SNPs or genes asso-
ciated with ceftriaxone resistance is an insufficient num-
ber of ceftriaxone-resistant isolates to make accurate
calls. A multivariate linear regression approach using
minimal inhibitory concentration data and WGS pro-
duced from isolates collected in England, the United
States, and Canada found that predictions using resis-
tance data from cefixime, penicillin, azithromycin, cip-
rofloxacin, and tetracycline all had �91% matches
within 1 doubling dilution of the observed minimal in-
hibitory concentration (90). Although not prediction
based, a cohort of 435 clinical N. gonorrhoeae isolates
from China were found to have 25.6% (112/425) iso-
lates with reduced susceptibility to ceftriaxone (91).
Within this cohort, SNP leading to amino acid changes
in PBP2, PorB, MtrR, and PilQ were associated with

increased ceftriaxone resistance (91). A novel method
for identification of resistant N. gonorrhoeae using geno-
mic neighbor typing when combined with Oxford
Nanopore MinION technology was able, within
10 minutes, to provide 81% sensitivity and 100% spe-
cificity for resistance prediction (92).

We can foresee a future in which clinical mNGS is
used to identify antibiotic resistance conferring SNPs or
the presence of acquired resistance genes within N. gonor-
rhoeae. This premise relies on resistance to the frontline
azithromycin–ceftriaxone double therapy increasing be-
yond its current low level, necessitating the use of geno-
mic or phenotypic means to identify other efficacious
antibiotics (i.e., quinolones, tetracyclines, or different b-
lactams). The use of mNGS, we believe, would be supe-
rior to culture plus WGS, given the historical difficulties
in growing N. gonorrhoeae and given the current wide-
spread use of culture-independent NAATs. An additional
benefit will be the detection of the related pathogen
Neisseria meningitidis, which can cause urethritis.

The Future of NGS in Clinical Microbiology

NGS is currently in use as a diagnostic tool in some clini-
cal microbiology laboratories; example cases include
culture-independent microbial identification or detection
from sterile sources including blood, cerebrospinal fluid,
and synovial fluids using mNGS (47, 93). WGS for sus-
ceptibility predictions remains uncommon. For wide-
spread implementation, a test must improve turnaround
time, provide enhanced or additional clinically actionable
information, or reduce costs. Reduced turnaround times
are quite plausible for slow-growing acid-fast bacilli, molds,
anaerobes, fastidious bacteria, or formalin fixed-tissue
specimens. Reduced turnaround times and enhanced data
may be possible for positive blood-culture specimens.
WGS is unlikely to displace current approaches by cost
alone without major technological advancement.

The small size of the MinION (particularly when
used with the Flongle adapter, which enables direct,
real-time sequencing) and rapid turnaround time holds
promise for its use as an implementable sequencing
technology in clinical microbiology laboratories.
Combined with development of novel algorithms such
as those used by B�rinda et al. (92), it could provide in-
formation on species and ARG presence within minutes.
Currently, for most nonfastidious human pathogens,
targeted sequencing may prove to be a reasonable stop-
gap to improve sequencing efficiency, as data and space
on the sequencer remain concerns.

Conclusions

Microbial sequencing is well established in research and
public health settings and is emerging as a component
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of clinical care in clinical microbiology laboratories. The
role of resistance prediction will undoubtedly continue to
expand in clinical microbiology as our understanding and
appreciation of the technology grows and the workflow
and analysis become aligned with routine clinical use.
Because clinical microbiology and hospital systems are
trending toward consolidation, having a centralized labo-
ratory performing NGS analysis for multiple hospitals
may be one compromise between cost and turnaround
time. As these techniques become more readily available,
it will also require that clinical microbiology laboratory
directors and staff access and distill the rapidly expanding
information about sequencing technologies and the com-
putational pipelines to accurately and confidently interpret
results and provide clinically accessible and actionable
reports. We anticipate that, for the foreseeable future, ge-
nomic methods will continue to complement culture-
based methods in the clinical microbiology setting.

Nonstandard Abbreviations: WGS, whole-genome sequencing;
mNGS, metagenomic next-generation sequencing; NGS, next-genera-
tion sequencing; ARG, antibiotic resistance gene; contig, contiguous

sequence fragment; SNP, single-nucleotide polymorphism; NAAT,
nucleic acid amplification test.
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