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ABSTRACT In agricultural settings, microbes and antimicrobial resistance genes
(ARGs) have the potential to be transferred across diverse environments and ecosys-
tems. The consequences of these microbial transfers are unclear and understudied.
On dairy farms, the storage of cow manure in manure pits and subsequent applica-
tion to field soil as a fertilizer may facilitate the spread of the mammalian gut micro-
biome and its associated ARGs to the environment. To determine the extent of both
taxonomic and resistance similarity during these transitions, we collected fresh ma-
nure, manure from pits, and field soil across 15 different dairy farms for three con-
secutive seasons. We used a combination of shotgun metagenomic sequencing and
functional metagenomics to quantitatively interrogate taxonomic and ARG composi-
tional variation on farms. We found that as the microbiome transitions from fresh
dairy cow manure to manure pits, microbial taxonomic compositions and resistance
profiles experience distinct restructuring, including decreases in alpha diversity and
shifts in specific ARG abundances that potentially correspond to fresh manure going
from a gut-structured community to an environment-structured community. Further,
we did not find evidence of shared microbial community or a transfer of ARGs
between manure and field soil microbiomes. Our results suggest that fresh manure
experiences a compositional change in manure pits during storage and that the stor-
age of manure in manure pits does not result in a depletion of ARGs. We did not
find evidence of taxonomic or ARG restructuring of soil microbiota with the applica-
tion of manure to field soils, as soil communities remained resilient to manure-
induced perturbation.

IMPORTANCE The addition of dairy cow manure—stored in manure pits—to field soil
has the potential to introduce not only organic nutrients but also mammalian micro-
bial communities and antimicrobial resistance genes (ARGs) to soil communities.
Using shotgun sequencing paired with functional metagenomics, we showed that
microbial community composition changed between fresh manure and manure pit
samples with a decrease in gut-associated pathobionts, while ARG abundance and
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diversity remained high. However, field soil communities were distinct from those in
manure in both microbial taxonomic and ARG composition. These results broaden
our understanding of the transfer of microbial communities in agricultural settings
and suggest that field soil microbial communities are resilient against the deposition
of ARGs or microbial communities from manure.

KEYWORDS agriculture, antimicrobial resistance, dairy farm, manure, microbiome

In agricultural environments, microbes and the genes they carry have the potential to
be exchanged and transferred by agricultural activity across large environmental set-

tings. For example, on dairy farms, cows excrete fresh manure, which is stored in ma-
nure pits for 6 months to up to a year and then spread across agricultural land to pro-
mote crop growth and yield. This is of potential local and global concern for three
reasons: (i) the restructuring of the microbiome of fresh manure in manure pits during
storage could result in the emergence of potential pathobionts, (ii) agricultural prac-
tices could result in the spread of mammalian-associated pathobionts into atypical
environments, and (iii) domesticated and food-producing animals receive antimicro-
bials that can overlap those used in humans to treat infections, which could result in
the spread and transfer of antimicrobial resistance to environmental microbes (1, 2).
However, our understanding of the microbiome consequences of these exchanges is
limited (3). While many studies have aimed at better surveying and tracking mammal-
based antimicrobial resistance spread in agricultural settings, no study has examined
the interplay of microbial community and resistance correlations across the three envi-
ronments (fresh manure, manure pits, and field soils) (1, 2, 4–12).

Antimicrobial use in food-producing animals is dominated by cattle, and the four
primary drug classes used are tetracyclines, aminoglycosides, macrolides, and sulfa
drugs (13). Antimicrobial usage can result in compositional shifts in manure in different
ways. First, antimicrobials are not fully metabolized in vivo, and upwards of 70 to 90%
may be excreted in manure and urine (14–16). These excreted antimicrobials could
directly impact microbiome communities into which they are introduced, such as those
in manure pits (17, 18). Second, antimicrobial usage could lead to the maintenance
and evolution of antimicrobial resistant strains and genes in the gastrointestinal tract
of domesticated animals, which could then be excreted (19–21). In both cases, we
expect the microbiome and resistome composition of manure to be impacted by anti-
microbial use. Further, the excrement can then be stored in manure pits and used as a
source of nutrients across agricultural fields, allowing an opportunity for the spread of
the microbiota of the manure to soils (22–24).

Manure provides essential nutrients for crop growth, such as phosphorus, potas-
sium, and nitrogen, and adding organic matter to soils can improve soil structure
and increase the soil’s ability to hold water and nutrients (25). Soil has a very different
microbial community than the mammalian gut and can also harbor antimicrobial re-
sistance genes (ARGs) (26–28). The agricultural soil microbiome is highly diverse, and
naturally occurring ARGs are not necessarily related to antimicrobials used to treat
animals (29). However, the introduction of microbiota from the guts of animals may
have adverse effects on the microbial composition and functional resistance profiles
found in the environment. Past studies suggest that antimicrobial resistance may
remain on farms through the acquisition of multidrug resistance and horizontal gene
transfer, but it is unclear how much antimicrobial resistance spreads to fields and
how that spread influences microbial composition and the total amount and diversity
of functional ARGs, known as the resistome of manure and soil (30–32). Further, most
studies focus on known or individual antimicrobial resistance genes of interest, miss-
ing less characterized antimicrobial genes that may be of equal concern (7–12).
Comprehensive functional metagenomic studies show that many ARGs are diverse,
widespread, and increasingly novel (29, 33–35). It is reported that functional metage-
nomic selections identify genes with less than 65% amino acid identity to known
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resistance genes (35). As a result, the ARG profiles in dairy farms are yet to be com-
prehensively characterized.

The microbiome of soil is rich, complex, and variable by soil depth (36). This varia-
tion is influenced by physical (pH, oxygen availability, and water penetration) and bio-
logical (microbes, plants, and animals) differences in these environments (37, 38). The
influence of the manure microbiome on soil samples could be greater at shallower soil
depths, where it is initially spread, than at lower depths, where it may not easily pene-
trate. Further, the physical and chemical differences that exist in manure pits, which
are generally stagnant, likely result in increasingly anaerobic environments deeper in
the pit, in turn enriching for anaerobic microbes along a depth gradient.

We hypothesize that the environmental conditions of manure pits and time outside
the anerobic gut result in a restructuring of the microbial communities and associated
ARGs of fresh cow manure. We further hypothesize that the spraying of differentially
microbiota-enriched manure from the manure pit may impact the microbial commu-
nity composition of the agricultural soil. To evaluate these differences in microbial
communities and antimicrobial resistance profiles across fresh manure, manure pits,
and field soils, we collected manure and soil samples from 15 different dairy farms
across Wisconsin (United States) in the fall of 2015 and 2016 and in the spring of 2016.
We collected fresh manure, samples from 3 different depths of manure pits (6, 12, and
24 in.) and from 2 depths of field soil (6 and 12 in.) (Fig. 1A). To assess microbial com-
munity and functional ARGs, we used a combination of shotgun metagenomic
sequencing and functional metagenomics to evaluate microbial taxonomic composi-
tion as well as known and novel ARG composition. Our unique approach of shotgun
sequencing paired with functional metagenomics allowed us not only to address
spread and transfer of antimicrobial resistance to environmental microbes at greater
resolution than previously studied but also to survey potential novel resistance genes
that may be arising in an understudied agricultural environment (2). We found that
during the transitions from fresh manure to manure pits to field soil, the microbiome is
characterized by distinct configurations—defined as differences in prevalence and
abundance—in both taxonomic and ARG composition, with little evidence of manure
ARGs transferring to field soil samples.

RESULTS
Taxonomic composition experiences a reconfiguration from fresh manure to

manure pit samples, while soil samples are taxonomically distinct. To compare tax-
onomic diversity between microbial communities, we performed shotgun metage-
nomic sequencing on all sample types and determined taxonomic abundances from
processed reads using Kraken2 (39). Fresh manure had significantly higher alpha diver-
sity, measured as richness (Fig. 1B) and Shannon’s H (see Fig. S1 in the supplemental
material), compared to manure pits samples collected at various depths (6, 12, and 24
in.) (linear mixed-effects model [LME], P, 0.001). This difference in taxonomic diversity
suggests a change in microbial communities after the transition from fresh manure to
manure pits. When we compared diversity between soil and manure samples, we
found that soil samples had a higher species richness and Shannon’s H than fresh ma-
nure or manure pit samples (Fig. 1B and Fig. S1) (LME, P, 0.05). We found no signifi-
cant differences in either species richness or Shannon’s H when comparing manure at
different depths or soil at different depths (Fig. 1B and Fig. S1).

To compare microbial beta diversity between sample types, we calculated a Bray-
Curtis dissimilarity index from species abundances and visualized dissimilarity indices
using principal coordinate analysis (PCoA). We found significant differences in taxo-
nomic composition based on both farm and season of collection (PERMANOVA:
P, 0.05) (Fig. S2). We found that soil samples, regardless of depth, have a taxonomic
composition that is significantly distinct from those of both fresh manure and manure
pit samples after controlling for repeated measures of sampling location (permuta-
tional multivariate analysis of variance [PERMANOVA], P, 0.001) (Fig. 1C). Further, the
taxonomic composition of fresh manure samples is significantly different from that of

Manure Microbial Communities during Transitions ®

May/June 2021 Volume 12 Issue 3 e00798-21 mbio.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

8 
Ju

ne
 2

02
1 

by
 1

28
.2

52
.1

6.
23

5.

https://mbio.asm.org


FIG 1 Taxonomic diversity metrics varied across fresh manure, manure pit, and soil samples. (A) Overview of study design and sample types. Samples
were collected from 15 different farms. Manure pits were sampled at 3 depths (6 in., 12 in., and 24 in.). Field soil was sampled at two depths

(Continued on next page)
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manure pit samples after controlling for repeated measures of sampling location
(PERMANOVA, P, 0.001), while manure pit samples have wide compositional variation
(Fig. 1C). When comparing pairwise Bray-Curtis dissimilarities within each sample types,
we found that manure pit samples have significantly higher beta diversity than both
fresh manure and soil samples (Fig. 1D) (P, 0.05), while soil samples had lower beta
diversity than manure samples (Fig. 1D) (P, 0.001).

Phylum abundances varied between soil and manure samples, with soil samples pri-
marily being composed of Proteobacteria and Actinobacteria, while manure samples
had high abundances of Proteobacteria, Bacteroidetes, and Firmicutes (Fig. S3). To evalu-
ate significant taxonomic differences between soil and manure samples, we used mul-
tivariable association analyses that rely on general linear models in MaAsLin2 in R (40).
We found 10 phyla that had greater abundance in soil than manure, including
Acidobacteria, Actinobacteria, and Proteobacteria (Fig. 1E) (general linear model [GLM],
q value, 0.05). We also found that five anaerobic genera, including Bifidobacterium,
Clostridium, Fusobacterium, Prevotella, and Bacteroides, had higher abundances in ma-
nure samples than soil samples (Table S1) (GLM, q value, 0.05). Taxonomic composi-
tion between fresh manure and manure pit samples had more phyla that were not sig-
nificantly different than between manure and soil samples (Fig. 1C; Fig. S3) (GLM, q
value, 0.05). We found that fresh manure samples are associated with an enrichment
of eight phyla, including Firmicutes; while manure pit samples are associated with an
enrichment of nine different phyla, including Proteobacteria (Fig. 1F; Table S1) (GLM, q
value, 0.05). Fresh manure samples are also associated with a higher abundance of
Enterobacteriaceae, Staphylococcus aureus, Enterococcus faecium, and Clostridioides diffi-
cile, taxa that have human pathobionts and antimicrobial resistance determinants
(Table S1) (GLM, q value, 0.05).

Thus, alpha diversity, beta diversity, and taxonomic composition-based analyses
indicate a clear shift in the microbial community composition from fresh manure sam-
ples to manure pit samples but no significant shifts in taxonomic diversity across ma-
nure pit depths. Soil samples had high alpha diversity and were compositionally similar
to other soil samples across farms and seasons but were compositionally distinct from
all manure samples.

Antimicrobial resistance gene abundance and diversity were higher in manure
samples than in soil samples.While there are distinct taxonomic differences between
fresh manure, manure pits, and soil, these communities do not tell us about shifts in
antimicrobial resistance that may be associated with the dairy cow gut and potentially
transferred to manure pits and soils. To determine functional antimicrobial resistance
profiles, we created functional metagenomic libraries from 143 dairy manure metage-
nomes, representative of all manure pit depths and fresh manure. From those samples,
we constructed nine functional metagenomic libraries, screened the libraries on 15
antimicrobials commonly used in agricultural animals, and recovered 130 selections of
resistant transformants. Resistance screens on D-cycloserine, tetracycline, and trimetho-
prim yielded the highest colony counts (3,000) in all nine libraries (Fig. S4). Resistance-
conforming inserts were amplified, sequenced, and assembled with the Parallel
Annotation and Reassembly of Functional Metagenomic Selections (PARFuMS) pipeline
(41). Antimicrobial resistance gene abundances (assessed as reads per kilobase of tran-
script per million mapped reads [RPKM]) were quantified in all processed reads using

FIG 1 Legend (Continued)
(6 in. and 12 in.). (B) Box plot of species richness by sample type. Points indicate each individual sample measured. Significance was determined by a
linear mixed-effects model with random effects as location of sampling (marginal R2 = 0.516, conditional R2 = 0.584), followed by least-square means
pairwise comparisons. Fresh manure was significantly different from manure pit samples (P, 0.001). Soil samples were significantly different from
manure samples (P, 0.05). (C) Principal-coordinate analysis (PCoA) plot of Bray-Curtis dissimilarity index for species abundances of all sample types.
There is significant clustering by sample type after controlling for repeated measures of sampling location (PERMANOVA, R2 = 0.45, P, 0.001). (D) Box
plot of beta diversity determined by Bray-Curtis dissimilarity comparisons for each sample time. Points indicate pairwise comparisons by sample type.
(E) Estimates of coefficients of soil relative to manure for significant phyla in a multivariable general linear model using MaAsLin2. Random effects
included farm sample location and sampling time period. (F) Estimates of coefficients of manure pit depths relative to fresh manure for significant
phyla in a multivariable general linear model using MaAsLin2. Random effects included farm sample location and sampling time period.
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ShortBRED v0.9.4 (42) with a curated database of all resistance proteins from the
Comprehensive Antibiotic Resistance Database (CARD) (43) combined with the func-
tionally selected resistance proteins characterized in this study (Table S2) (41, 42). We
used a rarefaction analysis to determine saturation of ARG richness based on read cov-
erage for both manure and soil samples (Fig. S5). We found that manure samples con-
tained a higher relative abundance (RPKM) and a greater diversity of ARGs than soil
samples (Fig. 2A) (LME, P, 0.05). This difference may be reflective of differences in cov-
erage between manure samples and soil samples (44). However, there were no signifi-
cant differences in ARG abundance or diversity between fresh manure and the manure
pit samples at any depth (Fig. 2A).

We compared ARG composition between fresh manure, manure pits, and soil samples
using Bray-Curtis dissimilarity from ARG abundances and PCoA. We found that, similar to the
taxonomic PCoA, soil samples cluster separately from both fresh manure and manure pit
samples (PERMANOVA, P, 0.001) (Fig. 2B). When we compared beta diversity for resistance
composition, we found that pairwise Bray-Curtis dissimilarities were higher in soil samples
than in manure samples and that fresh manure had significantly lower resistome beta-diver-
sity than any manure pit samples (Fig. S6) (LME, P, 0.001). Thus, while there is not a
decrease in ARG abundance or diversity from fresh manure to manure pits, there is a reconfi-
guration of ARG composition after this transition. However, soil samples remain distinctly dif-
ferent frommanure samples in both abundance and composition of ARGs.

To integrate and compare both taxonomic and resistance composition differences
between samples, we performed a Procrustes analyses on the Bray-Curtis distance matri-
ces of species abundance (Fig. 1C) and ARG abundance (Fig. 2B). Procrustes analysis indi-
cated that the microbial taxonomic and resistance structure are correlated (Procrustes sum
of squares=0.574; correlation in a symmetric Procrustes rotation=0.653; P, 0.001).
Subsequent principal-component analysis (PCA) on the combined matrices of resistance
abundance and species abundance found that the variables with the highest loadings for
both PC1 and PC2 were all ARGs, with 10 of the top 27 variables on PC1 corresponding to
tetracycline resistance elements (Fig. 2C). Plotting PC1 and PC2 illustrates a structure simi-
lar to that seen with both taxonomic and resistance PCoA plots, where soil clusters tightly
and separately from manure samples along PC1 and fresh manure clusters separately from
manure pit and soil samples (Fig. 2D). Further, when comparing PC1 to ARG abundance or
species abundance, we found a strong correlation between ARG abundance and PC1
(Fig. 2E) (GLM, R2 = 0.781, P, 0.001), and a weaker correlation between species abun-
dance and PC1 (Fig. S7) (GLM, R2 = 0.140, P , 0.001). This suggests that the variation we
found across this data set is highly correlated with total ARG abundance.

Thus, we find that as the manure microbiome is transferred from fresh manure to
manure pits, there is a change in the composition but not the abundance of ARGs.
Furthermore, significant compositional differences in ARGs between manure and soil
samples show little support for a shared resistance community or antimicrobial burden
between sample types.

Tetracycline, aminoglycoside, and MLS resistance determinants were enriched
in manure samples compared to soil samples. To evaluate significant ARG class and
family differences between soil and manure samples, we used multivariable association
analyses using MaAsLin2 (40). Tetracycline, aminoglycoside, and macrolide-lincosa-
mide-streptogramin (MLS) resistance genes had significantly different ARG abundances
between manure (both fresh and pit) and soil samples (Fig. 3; Fig. S8) (LME, P, 0.05).
Manure samples were significantly enriched in ARGs with antimicrobial inactivation,
target protection, and efflux mechanisms (Fig. 3B) (LME, P, 0.01). Beta-lactam resist-
ance determinants were significantly enriched in manure samples compared to soil
samples at most depths (Fig. 3C) (LME, P, 0.05). Multidrug class resistance determi-
nants were significantly different between fresh manure samples and soil samples at
any depth (Fig. 3C) (LME, P, 0.01). ARGs that were enriched in soil samples compared
to manure samples include vancomycin, ADC beta lactamase, NDM beta lactamase,
estDL136, and AAC3 genes (Fig. 3A; Table S1) (GLM, q value, 0.05). ARG mechanisms
that were not significantly different between fresh manure, manure from manure pits,
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FIG 2 Antimicrobial resistance abundance and diversity varied across fresh manure, manure pit, and soil samples. (A)
Box plots of ARG abundance and gene richness across sample type show a significant difference between manure and
soil samples. Points indicate individual samples. Significance was determined by a linear mixed-effects model with
random effects as location of sampling (for abundance marginal R2 = 0.658 and conditional R2 = 0.727; for gene
richness, marginal R2 = 0.526 and conditional R2 = 0.690), followed by least-square means pairwise comparisons. Soil
was significantly different from manure samples (P, 0.001). (B) Principal-coordinate analysis (PCoA) plot of the Bray-
Curtis distance matrix for ARG abundances of all sample types. There is significant clustering by sample type after
controlling for repeated measures of sampling location (PERMANOVA, R2 = 0.294, P, 0.001). (C) Principal-component
analyses (PCA) eigenvectors with loading values with a ,0.1 threshold for combined PCA of ARG and species
abundances. (D) Scatterplot of PC1 and PC2 from PCA analysis of ARG and species abundances. (E) Scatterplot of PC1
against ARG abundance with a positive correlation by linear mixed-effects model with sample location as a random
effect (estimate = 0.21, intercept = 2.30, marginal R2 = 0.781, conditional R2 = 0.866, P, 0.001).
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and field soil were antimicrobial target replacement, target alteration, and efflux/op-
eron regulator mechanisms. Further, soil sample depth was not a significant factor in
either ARG mechanism or drug target type, while manure sample depth was significant
with phenicol ARGs (Fig. 3B and C). We observed that soil samples differ in their resist-
ance profiles compared to all manure samples in their drug target ARG abundances.
Resistance determinants and mechanisms varied between soil and manure regardless
of depth; however, significant differences were observed between the resistomes of
fresh manure and manure pits.

FIG 3 Resistance genes differ significantly between soil and manure samples. (A) Estimates of coefficients of
soil samples relative to manure samples for significant resistance gene differences in a multivariable general
linear model using MaAsLin2. Random effects included farm sample location and sampling time period. (B) Box
plot of total resistance gene count [log10(RPKM)] grouped by antimicrobial resistance mechanism. Points
indicate each individual sample measured. (C) Box plot of total resistance gene count grouped by the top six
antimicrobial resistance categories. Significance was determined by a linear mixed-effects model with random
effects as location of sampling (ARG resistance categories, marginal R2 = 0.68, conditional R2 = 0.749;
antimicrobial resistance categories, marginal R2 = 0.670612, conditional R2 = 0.723), followed by least-square
means pairwise comparisons. *, P , 0.03; **, P , 0.005.
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Antimicrobial resistance profiles varied between fresh manure and manure pit
samples. Fresh manure and manure pit resistance profiles all contained high ARG
abundances for aminoglycosides, beta-lactams, MLS, and tetracycline resistance and
had similar ARG mechanism profiles (Fig. 3B and C). However, we found that beta-lac-
tam ARG abundances were significantly different between fresh manure and manure
pits at all depths (Fig. 3C) (LME, P, 0.05). Phenicol resistance gene abundance was sig-
nificantly different between fresh manure and manure pit at depths of 6 and 24 in.
(Fig. 3C) (LME, P, 0.01). Fresh manure had statistically significantly higher ARGs with
antimicrobial efflux mechanisms than manure pits at different depths (Fig. 3B) (LME,
P, 0.05). ARG mechanism profiles between fresh manure and manure pits were varied,
and differences between sample types were also apparent at the gene product level.

To further characterize the differences between manure pit depths relative to fresh
manure, we conducted multivariable association analyses. Manure pit profiles con-
tained a wider range of enriched genes, such as inuB, tetT, tetW, and tetX, and were
enriched in tetM products compared to fresh manure (Fig. 4A; Table S1). Fresh manure

FIG 3 (Continued)
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FIG 4 Resistance genes differ between fresh manure and manure pit samples. (A) Estimates of coefficients of manure pit depths relative to
fresh manure for significant resistance gene differences in a multivariable general linear model using MaAsLin2. Random effects included
farm sample location and sampling time period. (B) Resistance genes are grouped by antimicrobial class on the y axis and manure samples
are hierarchically clustered by sample type on the x axis. Colored annotations indicate gene antimicrobial resistance category. Resistance
gene count is presented as log10(RPKM). Hierarchical clustering was created in R using the package pheatmap (75).
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FIG 4 (Continued)
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contained higher counts of tetW, tetH, tetQ, tet40, cfx, mef, ANT2, and catA genes than
manure pits (Fig. 4A; Table S1). A wider variety of ARGs that mapped to glycopeptide,
multidrug class, aminoglycoside, and tetracycline drug targets were characterized in
manure pit samples than fresh manure (Fig. 4B). Manure pit samples were significantly
enriched with ARGs with antimicrobial inactivation and antimicrobial target alteration
mechanisms relative to fresh manure, while fresh manure had significantly more ARGs
with antimicrobial efflux and target protection mechanisms (Fig. 4A; Table S1) (GLM, q
value, 0.05). ARGs varied between fresh manure and pit manure in both ARG drug
targets and mechanisms.

DISCUSSION

The mammalian gut is a known reservoir of pathobionts and antibiotic resistance
elements (45). Dairy farms routinely fertilize their fields using cow manure, after a pe-
riod of storage in manure pits. The application of manure from cow manure pits to
field soil may facilitate spread of the dairy cow gut microbial community and its associ-
ated ARGs to the broader environment (14, 46). To determine the extent of both taxo-
nomic and resistome similarity during these transitions, we sampled fresh manure, ma-
nure pits, and field soil across 15 different farms. We found that as microbial
communities transition from fresh manure to manure pits, the taxonomic composition
and resistance profiles experience distinct reconfigurations but not an overall decrease
in resistance gene abundance; furthermore, there was relatively low taxonomic and
resistome similarity between manure and field soil, suggesting that application of pit
manure does not contribute substantially to the soil microbiome or resistome at the
interrogated resolution.

When comparing microbial communities between manure pits and field soil, we
found large taxonomic composition differences that suggest that the field soil micro-
biome is resilient to microbial perturbation from the manure microbiome and that soils
remained distinct from manure samples and similar to control soil samples, despite
having manure from the manure pits introduced regularly. In further support of this
dominant resiliency of the soil microbiome, despite the fact that field samples were
collected across seasons and a variety of farms and field types, soil samples were com-
positionally more similar to each other than to manure pit samples. As manure pit sam-
ples showed high beta-diversity between samples, we would have also expected beta
diversity between field soils to increase after manure was spread over field soils if there
were significant transfers of manure microbes to the soil; however, low beta diversity
of soil samples suggests that little perturbation of field microbial communities resulted
from manure spreading. Additionally, as manure is spread across the top of the soil, we
might expect to find variation in the microbial communities at different depths, with
manure more strongly impacting the top layer of soil than the lower level (47). Instead,
soil communities were similar in all taxonomic community measurements regardless of
depth, suggesting a limited impact of manure spreading on taxonomic composition,
even close to the surface. Our results, paired with results in recent literature, suggest
the need for studies at the level of microbial strains and functions to assess whether
manure application affects soil microbial communities and ARGs found in the environ-
ment at deeper resolution and lower frequencies than we and others have so far per-
formed, in both short and long time periods (23, 48, 49).

When microbial communities transition between fresh manure to manure pits, the
communities experience taxonomic shifts that are likely part of a fundamental restruc-
ture that occurs as the community transitions from a gut to an environmental struc-
ture. During this transition, we would expect at least three possibilities: taxa that are
gut specific to be outcompeted, taxa that are able to survive environmental conditions
to be selected, and new taxa from the environment to be introduced. The shifts we
found in taxa support these possibilities. We found a decrease in Enterobacteriaceae, a
family known for its diverse pathobionts that are often found in the gut, in pathobiont
species such as S. aureus, E. faecium, and C. difficile, and in anaerobic genera such as

Sukhum et al. ®

May/June 2021 Volume 12 Issue 3 e00798-21 mbio.asm.org 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

8 
Ju

ne
 2

02
1 

by
 1

28
.2

52
.1

6.
23

5.

https://mbio.asm.org


Actinomyces, Fusobacterium, Clostridium, Bacteroides, Prevotella, and Bifidobacterium
(50). These changes may indicate a shift away from pathobionts and gut-associated
bacteria. In the manure pits, we found an increase in Firmicutes, which can be found in
various environments and can survive extreme conditions. We also found an increase
in Actinobacteria, which include terrestrial and aquatic bacteria that are less present in
gut communities and particularly enriched in our soil samples (51). Both phyla might
suggest a shift to a more environmental microbial composition.

Although there is a taxonomic reconfiguration from fresh manure to manure pits
with a decrease in species alpha diversity, we did not find a decrease in abundance or
richness of ARGs. This is especially interesting because we might expect the selective
pressures in the mammalian gut that enrich ARGs to be decreased in environmental
settings. Lack of ARG depletion suggests that either ARGs are maintained outside the
gut, possibly by stable plasmids or by selective pressures from the excreted antimicro-
bials that are not metabolized, or ARGs are introduced to the manure pits from sources
other than the dairy cow gut (18, 30, 32). Further, we found a reconfiguration in the
composition of ARGs, with specific ARGs being enriched in either fresh manure or ma-
nure pits and an increase in beta diversity between fresh manure and manure pits.
These compositional shifts may be a consequence of taxonomic shifts impacting which
ARGs are prevalent in manure pits.

ARG profile might be related to particular antimicrobials that dairy cows are given
when sick. We observed high counts of ARGs conferring resistance to tetracyclines, ami-
noglycosides, and beta-lactam in manure samples. Manure ARG counts were significantly
different from those in soil, and ARGs varied between fresh manure and pit manure in
both drug targets and mechanisms. Additionally, while most fresh manure samples clus-
tered together, a few samples stand out distinctly as being more similar to manure pit
samples than to fresh manure samples. As these fresh samples are compositionally dis-
tinct, their unique diversity and abundance could contribute to and drive the diversity
we find in manure pits, which is inherently a slurry of many different fresh manure sam-
ples over time. We do not know the health or state of the cows that these fresh manure
samples came from, but it is possible that some may have been clinically treated with
antimicrobials, which might explain their unique ARG profiles. The particular enrichment
in manure samples of tetracycline and aminoglycoside resistance determinants might
occur because both drug classes are commonly used to treat mastitis and other suscepti-
ble bacterial infections in agricultural animals (13, 52, 53). However, increased resistance
limits the efficiency of tetracycline and aminoglycosides in agricultural and clinical set-
tings due to a variety of inactivating mechanisms (54–56). Further, there is a high risk of
resistance genes with novel resistance activities emerging in response to antimicrobial
pressures. These novel activities are commonly observed in broad-spectrum tetracycline
resistance (54, 57, 58). tet(X) was detected in high abundances in manure pit samples.
Monitoring the prevalence of tet(X), especially in the environment, is a priority consider-
ing its expanded substrate range, which poses a threat to human and animal health (59).
To accurately characterize changes in ARGs with consistent manure applications, future
studies should focus on longitudinal sampling (60). Further, recent research suggests
that soil type, pH, and nutrient availability influence microbial compositional changes
and ARGs in the environment (61, 62). Future studies could incorporate this information
to better understand compositional shifts.

In conclusion, our approach of investigating longitudinal and comparative micro-
biome and ARG changes in manure over transitions from fresh manure to short- and
long-term storage in manure pits to its application as fertilizer in agricultural fields pro-
vides a comprehensive microbiome and ARG characterization to the field of animal
and environmental microbiome studies, with its potential implications for human
health. Further, our unique approach of shotgun metagenomic sequencing combined
with functional metagenomics provides a comprehensive and detailed description of
both taxonomic and resistome variation based on a longitudinal study of 15 small, me-
dium, and large dairy farms in Wisconsin, a major dairy state of the United States. We
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found that as the manure microbiome transitions from fresh dairy cow manure to ma-
nure pits, microbial taxonomic compositions and resistance profiles experience distinct
reconfigurations that potentially correspond to the fresh manure going from a gut-
structured community to an environment-structured community. Further, when we
compared manure to field soils, we did not find evidence of shared community or a
transfer of ARG abundance, with the field soil microbiome remaining relatively unper-
turbed by manure spread. Thus, interest in decreasing the spread of pathogenic bacte-
ria and ARGs in an agricultural setting might focus effort and further studies on dis-
rupting microbial communities in fresh manure and manure pits to decrease ARG
abundance. Some ways of doing this might include removing selective pressures for
ARG maintenance, such as remnant antimicrobials, and incorporating proper manure
storage buffers to prevent runoff. However, our study suggests that the risks of ARGs
spreading to field soil from manure pits are limited, at least at the resolution and fre-
quency sampled in our study.

MATERIALS ANDMETHODS
Sample collection. Fresh manure, manure stored in manure pits, and soil samples were collected

from the same set of 15 Midwestern dairy farms over three seasons, fall 2015, spring 2016, and fall 2016.
For the fall 2015 collection, samples were collected over 4 days during 2 days in last week of August and
second week of September. The spring 2016 samples were collected during the third week of April, and
fall 2016 samples were collected during first and second weeks of September. Fresh manures samples
were collected either catching during defecation or from the core of the freshly defecated manure pile
next to a cow. Samples from the holding tanks were collected at depths of 6, 12, and 24 in. from the
most convenient and safest edge in 50ml conical flasks. Holding tanks are small (;20 feet diameter) to
large (;50 feet) pond-like reservoirs where fresh manures are drained off throughout the year for collec-
tion and then used and spread in the fields (corn or soybean) at the end of fall harvest or at the begin-
ning of the spring planting season. Two sets of soil samples at depths of 6 and 12 in. were collected
from either corn or soybean fields where the manures had been spread once approximately 6months
prior. Both manure and soil samples were collected using aseptic collection techniques in sterile 50-ml
conical tubes or 50-ml wide-mouth plastic cups with lids, transferred to a cooler filled with dry ice, trans-
ported to laboratory, and stored in a 280°C freezer until further processing. Farms included small (,24
cows), medium (.25 to 100 cows), and large (.100 cows) farms.

DNA extraction and sequencing. Total genomic DNA was extracted from ;100mg of each manure
and soil sample using the DNeasy Powersoil kit (Qiagen, Germantown, MD, USA). The kit protocol was
used with a minor modification, where samples were lysed using a Mini-Beadbeater 24 (Biospec
Products) rather than a vortex adapter as described previously (63, 64). We quantified DNA concentra-
tion using Qubit fluorometer double-strand-DNA (dsDNA) assays (Thermo Fisher Scientific). Illumina
sequencing libraries were prepared using 0.5 ng/ml of genomic DNA in a modified Nextera kit protocol
(Illumina, San Diego, CA, USA), following the modifications described by Baym et al. (65). We pooled and
sequenced libraries on a NextSeq HighOutput platform (Illumina) to obtain ;5 million 2� 150-bp reads
per sample. Illumina paired-end reads were demultiplexed by barcode. Adapters were removed using
Trimmomatic v36 (Illuminaclip = 2:30:10:1:TRUE, Leading= 10, Trailing = 10, Sliding Window=4:15, Min
Length = 60), and contaminating human and cow reads were removed using Deconseq v0.4.3 (66, 67).

Taxonomic metagenomics and analyses. Microbial taxonomic composition and abundances were
determined from decontaminated shotgun reads using Kraken2 and relative abundances were calcu-
lated using Bracken (39, 68). Species richness, Shannon’s H, and Bray-Curtis distances were computed in
R using vegan (69). PERMANOVA were calculated using the adonis2 function of the vegan package in R
with population groupings indicated by strata (69). Statistical modeling was conducted using linear
mixed-effects models to account for repeat measuring for farms using lme4 and MaAsLin2 in R, with
sample type as fixed effect and farm ID and collection period as random effects (40, 70).

Functional metagenomics and analyses. Manure and soil libraries were screened for resistance
against 15 antimicrobials (aztreonam, cefepime, cefotaxime, cefoxitin, ceftazidime, chloramphenicol, col-
istin, D-cycloserine, doxycycline, gentamicin, penicillin, piperacillin, tetracycline, tigecycline, and trime-
thoprim) representing eight drug classes (b-lactams, tetracyclines, aminoglycosides, amphenicols, quin-
olones, sulfonamides, polymyxins, and cycloserine) using previously described methods (71–73). Nine
libraries of approximately 15 samples each were created by pooling 143 manure samples, and resistance
was observed in all antimicrobials screened to make a total of 130 selections of resistant transformants
for further use. Resistance-conferring fragments were sequenced and assembled into contigs using the
Parallel Annotation and Reassembly of Functional Metagenomic Selections (PARFuMS) v1.1 assembly
pipeline (41). Contigs exceeding the colony count of the library by 10� were filtered from downstream
analyses. To obtain a comprehensive list of ARGs and identify the abundance of resistant genes, contig
open reading frames (ORFs) were then screened using several databases (CARD, Resfinder, and
NCBI_AMR) in a hierarchical fashion. Databases were combined for a total of 6,594 markers and 2,314
ARG gene families utilized. Nonredundant annotations from functional metagenomic screening with
known curated databases (CARD and NCBI-AMR) were used for resistance identification. Marker identifi-
cation was used with Uniref90 and clustered at 95% identity for marker creation, and resistance gene
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markers in our shotgun metagenomic samples were identified using ShortBRED v0.9.4 (42). We manually
filtered marker file for false positives (Table S2 for exclusion criteria). Statistical analysis was performed
on the resulting 409 ARG families using PERMANOVA and linear mixed-effects models using the Adonis
and lme4 R packages as described above. Taxonomic and resistome PCoA were compared and visualized
with the Procrustes function in the vegan R package (69).

Resistance metagenomics and analyses. Antimicrobial resistance genes were identified using
ShortBRED v0.9.4 (42) from decontaminated shotgun reads as described above using ARGs from the
CARD and NCBI-AMR database. Similar to taxonomic metagenomic analysis, ARG composition, abun-
dance, gene richness, Shannon’s H, and Bray-Curtis distances were computed using the vegan R package
(69). We used a rarefaction analysis to determine saturation of ARG richness based on read coverage for
both manure and soil samples by subsampling reads from our original samples at intervals of 500,000
reads. PERMANOVA and linear mixed-effects models were calculated using the adonis2 function in
vegan and lme4 in R, respectively (69, 70). Multivariable association analyses were conducted using
MaAsLin2 in R (27). Sample type was set as a fixed effect and farm ID and collection period as random
effects for the linear mixed-effects models and multivariable association analyses (40, 70). Procrustes
analyses of taxonomy and ARG composition were performed with the Procrustes function in the vegan
package in R with 10,000 permutations. To visualize differences between a combined taxonomic and
ARG matrix, we used a principal-component analysis (PCA) using labdsv in R (74). We did not transform
combined data using the Bray-Curtis dissimilarity as was done in PCoA previously.

Data availability. Shotgun metagenomic reads generated for this study were uploaded to NCBI
under the BioProject no. PRJNA671703 (http://www.ncbi.nlm.nih.gov/bioproject/671703).
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