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Structural and molecular rationale for the
diversification of resistance mediated by the
Antibiotic_NAT family
Peter J. Stogios 1,9, Emily Bordeleau2,9, Zhiyu Xu1, Tatiana Skarina1, Elena Evdokimova1, Sommer Chou 2,

Luke Diorio-Toth 3, Alaric W. D’Souza 3, Sanket Patel3, Gautam Dantas 3,4,5,6, Gerard D. Wright 2 &

Alexei Savchenko 1,7,8✉

The environmental microbiome harbors a vast repertoire of antibiotic resistance genes

(ARGs) which can serve as evolutionary predecessors for ARGs found in pathogenic bacteria,

or can be directly mobilized to pathogens in the presence of selection pressures. Thus, ARGs

from benign environmental bacteria are an important resource for understanding clinically

relevant resistance. Here, we conduct a comprehensive functional analysis of the Anti-

biotic_NAT family of aminoglycoside acetyltransferases. We determined a pan-family anti-

biogram of 21 Antibiotic_NAT enzymes, including 8 derived from clinical isolates and 13 from

environmental metagenomic samples. We find that environment-derived representatives

confer high-level, broad-spectrum resistance, including against the atypical aminoglycoside

apramycin, and that a metagenome-derived gene likely is ancestral to an aac(3) gene found in

clinical isolates. Through crystallographic analysis, we rationalize the molecular basis for

diversification of substrate specificity across the family. This work provides critical data on

the molecular mechanism underpinning resistance to established and emergent aminogly-

coside antibiotics and broadens our understanding of ARGs in the environment.
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Antibiotic resistance is a global crisis that threatens every
class of clinically deployed antibiotic1. Antibiotic resis-
tance genes (ARGs) isolated from bacteria that cause life-

threatening disease can often be traced to environmental micro-
bial communities (reviewed in refs. 2–4). To understand the
sources of antibiotic resistance, the identification of links con-
necting ARGs in the clinic with those in the environment,
characterization of their horizontal transfer, evolution, and bio-
chemical/molecular properties are focuses of continuing research
(reviewed in refs. 4,5). For example, the mcr family of plasmid-
borne colistin resistance genes is thought to originate from
chromosomal genes found in various Moraxella and Aeromonas
species6–8. The family of extended-spectrum β-lactamase blaCTX-
M genes found on plasmids of Gram-negative pathogens has been
traced to the chromosomal genes of various Kluyvera species that
are only rarely pathogenic9. Given the regular exchange of genetic
material harboring ARGs between microbial species, more
research is required to understand the breadth and depth of the
global resistome, including such aspects as the scope of resistance
mechanisms, the specificity and efficiency of ARG products in
conferring resistance, and their potential to be mobilized and
transferred to pathogens. This comprehensive data is critical for
tackling the antibiotic resistance crisis5,10.

Aminoglycosides (AGs) (Fig. 1) are widely used to treat infec-
tions caused both by Gram-positive and Gram-negative bacteria
due to their broad-spectrum activity11. Toxicity and resistance are

significant problems complicating the use of this class of drugs;
nonetheless, they retain value for treating multi-drug and
extensively-drug resistant Gram-negative pathogens causing serious
infections12. Canonical AGs are characterized by a core
2-deoxystreptamine ring with substitutions at the 4- and 6- or 4-
and 5- positions. Non-canonical AGs possess variations on the
2-deoxystreptamine core such as streptomycin, or apramycin which
contains a fourth ring structure fused to 2-deoxystreptamine.
Apramycin is currently used in veterinary medicine13,14, and with
the notable exceptions of aac3-IV and the emerging resistance
determinant apmA15,16, few ARGs confer resistance to apramycin,
prompting excitement for broader deployment in medicine17–21.

AG resistance is primarily conferred by three classes of
aminoglycoside-modifying enzymes (AMEs): phosphotransferases
(APHs), nucleotidylyltransferases (ANTs), and acetyltransferases
(AACs)22. AMEs permanently alter the AG substrate, preventing
them from binding to their target, the A-site of the 16S rRNA in the
bacterial ribosome. AMEs are widely disseminated in pathogens.
Current research focuses on their specificity, mechanisms, and
inhibition by small molecules to fortify the design of next-
generation AG against resistance, as exemplified by the develop-
ment of plazomicin and apramycin analogs (apralogs23–25).

Previously, we identified 27 AACs in grassland soil microbial
communities using a functional metagenomics (FMG)
approach26,27. These AACs belonged to two sequence and struc-
turally distinct acetyltransferase families—GNAT (GCN5-related

Fig. 1 Chemical structures of aminoglycosides. The 3-amino group is highlighted in red.
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N-acetyltransferase) and Antibiotic_NAT. These families are dis-
tinct in sequence length (approx. 120 residues for GNAT and
approx. 220 residues for Antibiotic_NAT) and are classified dis-
tinctly by sequence databases (Antibiotic_NAT in Pfam: family
Antibiotic_NAT (PF02522), clan Antibiotic_NAT (CL0627) vs
GNAT: Acetyltransf_1 (PF00583), Clan Acetyltrans (CL0257)) and
by structural databases (Antibiotic_NAT in SCOP: Class=Alpha
and beta proteins (a/b), Fold=TTHA0583/YokD-like, Super-
family=TTHA0583/YokD-like, Family Aminoglycoside 3-N-acet-
yltransferase-like vs GNAT: Class Alpha and beta proteins (a+ b),
Fold: Acyl-CoA N-acyltransferases (Nat), Superfamily: Acyl-CoA
N-acyltransferases (Nat), Family: N-acetyltransferase, NAT). Fur-
thermore, the distinction between these two families is reflected in
the divergence in the topology of the β-sheet core of each fold,
where the Antibiotic_NAT family is centered on a 3-stranded
parallel β-sheet while the GNAT family is centered on a 4-stranded
antiparallel β-sheet. Finally, the two families utilize distinct enzy-
matic mechanisms, with Antibiotic_NAT utilizing a catalytic his-
tidine/glutamate dyad28 while GNAT utilizes a catalytic tyrosine
and glutamate pair29. For GNAT AACs, we showed that many
environment derived ARGs, which we called meta-AACs for
metagenomic AACs, possess resistance activity, acetylation effi-
ciency, and structural properties comparable to AMEs derived from
drug-resistant clinical species24,26. Our research established that
GNAT meta-AACs include all the qualities necessary to cause high-
level resistance if mobilized and transferred to human pathogens.

In contrast to the GNAT family, less is known about the bio-
chemical, structural, and molecular features of the Antibiotic_NAT
family. There are approximately 50 members of this family
identified26 and many are highly disseminated in Gram-negative
pathogens30, including AAC(3)-II, AAC(3)-III, and AAC(3)-IVa.
The AAC(3)-IIa enzyme possesses narrow AG specificity as it is
active only against 4,6-disubstituted compounds, while AAC(3)-IIIa
is strongly promiscuous due to its activity against a broad range of
4,5- and 4,6-disubstituted AGs28,31. The AAC(3)-IVa enzyme was
also shown to be promiscuous against a broad range of 4,5- and 4,6-
disubstituted AGs as well as against apramycin15. There have been no
studies describing the enzymatic characteristics of environment-
derived members of this family and no comprehensive family-wide
analysis to understand their diversification of structure and function.

Several members of the Antibiotic_NAT family have been struc-
turally characterized, including AAC(3)-IIIb and AAC(3)-VIa28,32

(note: these were erroneously assigned as members of the GNAT
family of AAC enzymes in these publications). Other structurally
characterized members of this family include FrbF from Streptomyces
rubellomurinus33, YokD from Bacillus subtilis, and BA2930 from
Bacillus anthracis34, none of which possess activity against AGs.

Here, we report a comprehensive structural and functional
analysis of the aminoglycoside-resistance spectrum conferred by
Antibiotic_NAT family enzymes through characterization of 13
environment-derived enzymes and 8 enzymes derived from
clinical isolates. This analysis shows that many confer high-level,
broad-spectrum aminoglycoside resistance, and five
environment-derived enzymes confer apramycin resistance.
Crystallographic analysis of various family members, including
meta-AAC0038, AAC(3)-IVa, AAC(3)-IIb, and AAC(3)-Xa,
allowed the construction of a molecular model explaining the
diversification of substrate specificity in this ARG family.

Results
The Antibiotic_NAT family sequences branch into four dis-
tinct clades, with all but one including environment-derived
members. Identification of new members of the Antibiotic_NAT
family through antibiotic selections of soil metagenomic
libraries35 prompted a revisit of the sequence diversity of this

family. Comparative sequence analysis of the family, including
these 14 enzymes derived from environmental microbial com-
munities, 12 Antibiotic_NAT enzymes originating from patho-
genic strains, and 25 additional representatives identified by
BLAST searches of Genbank, confirmed the presence of con-
served sequence motifs typical of Antibiotic_NAT enzymes
(Supplementary Fig. 1). This analysis also identified highly vari-
able regions that correspond to residues 62–95, 110–117,
127–142, and 190–212 in meta-AAC0038, along with a variable
C-terminal region (Supplementary Fig. 1). The TxΦHΦAE
(where Φ= a hydrophobic residue) sequence motif was pre-
viously proposed to contain key catalytic residues of this
family28,32,33. The glutamate residue in this motif interacts with
the histidine serving to increase the basicity of the latter residue.
The histidine extracts a proton from the AG 3-N-amine group,
activating it for nucleophilic attack on the acetyl-CoA carbonyl
group28,32,33. The threonine in this motif is thought to stabilize
the tetrahedral intermediate. Similar sequence signatures (resi-
dues Thr165-Glu171 in meta-AAC0038, Supplementary Fig. 1)
were identified in all analyzed members of this family, with His
and Glu (His168 and Glu171 in meta-AAC0038) along with two
glycine residues (Gly122 and Gly158 in metaAAC0038), com-
pletely conserved. This motif’s threonine (Thr165 in meta-
AAC0038) is also conserved in all but one of the analyzed
sequences where it is substituted by a chemically similar serine
(Supplementary Fig. 1)28,32,33.

Bayesian reconstruction of the phylogeny of the Antibiotic_-
NAT family revealed four main clades (Groups 1–4, Fig. 2).
Enzymes identified by our metagenomic sampling were dis-
tributed among all the clades except for Group 2, which
exclusively contains sequences derived from Actinomycetes.
Several meta-AACs such as meta-AAC0038, meta-AAC0016,
and meta-AAC0043 appear to be paralogs of AAC(3)-III,
AAC(3)-IVa, and AAC(3)-IIa, respectively.

Pan-family antimicrobial susceptibility testing aligns substrate
specificity with phylogeny. To comprehensively characterize the
spectrum and degree of resistance conferred by Antibiotic_NAT
family members, we tested the antimicrobial susceptibility of
Escherichia coli individually harboring the 21 different genes
coding for Antibiotic_NAT enzymes on the pGDP3 plasmid36.
The results (Fig. 2 and Supplementary Table 1) show that the
spectrum and degree of AG resistance correlate with the phylo-
genetic clustering. Group 1 members including AAC(3)-IVa and
four meta-AACs confer the broadest spectrum and highest degree
of resistance to 4,6- and 4,5-disubstituted AGs, consistent with
previous studies on AAC(3)-IVa15, and confer high-level resis-
tance to apramycin. We found that the Group 2 member
AAC(3)-Xa, derived from an Actinomycetes, is limited in its AG
specificity to the 4,6-disubstituted AGs kanamycin and tobra-
mycin; the only other Group 2 member tested in our host E. coli
was AAC(3)-IXa and did not convey any detectable AG resis-
tance. Group 3 enzymes including AAC(3)-IIIb and four meta-
AACs confer resistance to 4,6- and 4,5-disubstituted AGs, con-
sistent with previous data reported for AAC(3)-III enzymes28,31;
meta-AAC0038 is the lone member of this family that confers
resistance to apramycin. Group 4 members are restricted in
activity to 4,6-disubstituted AGs, including AAC(3)-IIb/IIc and
six meta-AAC enzymes, which is reflective of reports on the
resistance profile of AAC(3)-VIa32,37; AAC(3)-IIb also confers
low-level apramycin resistance.

Notably, each meta-AAC confers AG resistance, with many
demonstrating broad-spectrum and high-level resistance, includ-
ing against apramycin (meta-AAC0016, meta-AAC0018, meta-
AAC0033, meta-AAC0030, and meta-AAC0038).
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Crystal structures of meta-AAC0038, AAC(3)-IVa, AAC(3)-
IIb, and AAC(3)-Xa enzymes show that the variation in the
minor subdomain is responsible for diversity in activity against
AGs. We undertook a structural genomics campaign to under-
stand the structural basis of the evident diversification of sub-
strate specificity across the Antibiotic_NAT family, with a
particular interest in the broadly active Group 1 and meta-AAC
enzymes. We solved crystal structures of the AAC(3)-IVa,
AAC(3)-IIb, AAC(3)-Xa, and meta-AAC0038 enzymes, including
ligand-bound states of AAC(3)-IVa and meta-AAC0038. Crys-
tallographic statistics for all determined structures are shown
in Table 1.

The fold typical of the Antibiotic_NAT family is evident in all
structures, composed of 13 α-helices and 8 β-strands (Fig. 3a),
and determined structures superpose with pairwise RMSD’s
0.8–1.0 Å between 197 to 266 matching Cα atoms. Notably, the
primary sequence most conserved across the family representa-
tives (Supplementary Fig. 1) belongs to what we defined as a
major subdomain in the Antibiotic_NAT fold (Fig. 3b). In
contrast, the variable sequence regions identified by our
comparative analysis (see above) constitute a minor subdomain
(Fig. 3b). According to this distinction, the major subdomain is
centered on a 7-stranded antiparallel β-sheet with a bundle of 5 α-
helices arranged on one face of the sheet, with the second bundle
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Table 1 X-ray crystallographic statistics.

Structure Meta-AAC0038H29A

apoenzyme
Meta-
AAC0038H168A•AcCoA

Meta-
AAC0038H168A•CoA

Meta-
AAC0038H168A•apramycin•CoA

PDB code 6MMZ 6MN0 5HT0 7KES
Data collection
Space group C2 C2 C2 P3121
Cell dimensions

a, b, c (Å) 105.8, 158.1, 143.4 108.1, 159.6, 143.3 107.02,
159.50, 146.22

127.77, 127.77, 94.65

α, β, γ, (°) 90, 94.9, 90 90, 94.6, 90 90, 94.7, 90 90, 90, 120
Resolution, Å 25.00–3.30 25.00–2.40 25.0–2.75 30.0–2.36
Rmerge

a 0.268 (0.743)b 0.094 (0.372) 0.074 (0.440) 0.091 (1.427)
Rpimc 0.142 (0.395) 0.062 (0.249) 0.085 (0.251) 0.031 (0.505)
CC1/2 0.809b 0.949 0.968 0.601
I / σ(I) 6.3 (2.3) 10.75 (2.09) 17.76 (3.19) 21.87 (1.0)
Completeness, % 99.4 (99.9) 99.9 (100) 96.7 (90.4) 100 (100)
Redundancy 4.6 (4.6) 3.3 (3.2) 4.0 (3.7) 9.9 (8.8)
Refinement
Resolution, Å 19.75–3.30 24.93–2.39 24.97–2.75 29.19–2.36
No. of unique reflections:
working, test

35,122, 1646 94,715, 1996 60,061, 2021 36,879, 1846

Rwork/Rfreed 20.4/26.1 (29.6/38.9) 17.8/20.8 (23.1/28.9) 20.4/23.3 (31.3/
30.8)

19.1/22.8 (29.6/34.7)

No. of atoms and molecules
Protein 11,977; 6 12,033; 6 12,016; 6 3992; 2
Aminoglycoside N/A N/A N/A 73, 2
Acetyl-CoA/CoA N/A 306, 6 288, 6 96, 2
Solvent 104 236 105 25
Water 104 1706 343 170

B-factors
Protein 59.2 32.9 54.1 70.9
Aminoglycoside N/A N/A N/A 129.0
Acetyl-CoA/CoA N/A 33.1 52.9 61.9
Solvent 96.2 71.4 108.2 100.5
Water 20.4 43.4 47.7 64.2

R.m.s. deviations
Bond lengths, Å 0.002 0.005 0.014 0.005
Bond angles, ° 0.552 1.770 1.827 1.337

Structure AAC(3)-IVa apoenzyme AAC(3)-IVaH154A•APR AAC(3)-
IVaH154A•GEN

AAC(3)-IIb AAC(3)-Xa

PDB code 6MN3 6MN4 6MN5 7LAO 7LAP
Data collection
Space group C2 P212121 P212121 P212121 P6322
Unit cell

a, b, c (Å) 114.2, 55.3, 94.3 77.6, 103.5, 264.9 77.6, 131.9, 266.9 43.2, 61.4, 112.0 161.5,
161.5, 138.7

α, β, γ, (°) 90, 102.6, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 120
Resolution, Å 30.00–2.39 30.00–2.80 40.0–2.58 40.0–1.92 50.0–2.04
Rmerge 0.141 (0.997) 0.183 (1.771) 0.086 (0.542) 0.080 (0.332) 0.098 (1.074)
Rpim 0.080 (0.572) 0.063 (0.613) 0.048 (0.371) 0.037 (0.159) 0.024 (0.396)
CC1/2 0.524 0.776 0.703 0.524 0.593
I / σ(I) 9.98 (1.25) 12.77 (1.40) 14.08 (1.08) 26.19 (3.13) 31.42 (1.08)
Completeness, % 98.8 (99.9) 95.2 (97.1) 95.7 (82.0) 95.8 (79.8) 99.5 (92.9)
Redundancy 3.9 (3.9) 9.0 (8.9) 3.7 (2.5) 5.4 (4.7) 17.2 (6.6)
Refinement
Resolution, Å 30–2.39 29.33–2.80 38.4–2.58 35.32–1.92 49.39–2.04
No. of unique reflections:
working, test

22,587, 1129 63,643, 3627 83,240, 2000 22,528, 2167 66,736, 3279

R-factor/free R-factor 18.2/22.8 (27.1/32.2) 26.1/32.1 (35.3/41.1) 18.7/22.1 (26.8/28.1) 18.0/22.9 (23.6/
29.4)

16.5/19.8 (28.7/
31.5)

No. of refined atoms and molecules
Protein 3921; 2 11,564; 6 11,824; 6 2045; 1 4421; 2
Aminoglycoside N/A 186, 5 186, 6 N/A N/A
Acetyl-CoA/CoA N/A N/A N/A N/A N/A
Solvent 3 5 422 17 58
Water 176 330 519 211 678
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of 4 α-helices arranged on the other face of the sheet. The minor
subdomain is characterized by four main structural variations
that are subfamily-specific, which we called inserts 1–4. Insert 1
(Fig. 3b) forms an extended loop structure of variable length
while adopting a helical structure in AAC(3)-Xa, meta-AAC0038,
and AAC(3)-IIb but not in AAC(3)-IVa. Insert 2 forms a short
turn between two α-helices, which most closely impacts the AG
binding site. Insert 3 forms a two-stranded antiparallel β-sheet
while corresponding to a short α-helix found only in AAC(3)-IIb
structure. Finally, insert 4 is a C-terminal extension to the
major subdomain unique to AAC(3)-IVa and forms an α-helix
and a C3H1 Zn2+ binding site. Altogether, this global
structural analysis reflects that the minor domain is the principal
source of structural diversity among members of this family. A
negatively charged cleft is formed in the region between
the minor and major subdomains in each structure, with the
deepest section formed primarily by the minor subdomain.
As will be discussed in detail later, this cleft harbors the AG
binding site.

The Antibiotic_NAT enzymes also diversify in their oligomer-
ization state. The meta-AAC0038 adopts a dimeric structure with
a buried surface of ~900 Å2 per subunit (Fig. 3). This enzyme also

forms a dimer in solution according to the size exclusion
chromatography (not shown). In contrast, the AAC(3)-Xa
enzyme exists as a monomer in solution despite forming a dimer
in the crystal lattice (Fig. 3). AAC(3)-IVa also adopted a dimeric
structure (Fig. 3) both in crystal and in solution, in line with
previous reports on its oligomeric state15, but the arrangement of
the two chains in this enzyme differed from that of the meta-
AAC0038 dimer. The buried surface area between subunits of the
AAC(3)-IVa dimer (~650 Å2) was formed nearly exclusively
through interactions between the major subdomains of the two
monomers of this enzyme. Finally, AAC(3)-IIb was monomeric
both in the crystal structure and in solution (not shown).

Structural analysis of the group 1 enzyme AAC(3)-IVa suggests
a mechanism for broad specificity against AG substrates. To
understand the structural basis of the highly promiscuous nature
of group 1 Antibiotic_NAT enzymes, we pursued structural
characterization of the AAC(3)-IVa representative of this clade in
complex with AG substrates. To increase the chances of capturing
substrate-bound enzyme complex we used the catalytically
impaired His154Ala mutant of AAC(3)-IVa.

Table 1 (continued)

Structure Meta-AAC0038H29A

apoenzyme
Meta-
AAC0038H168A•AcCoA

Meta-
AAC0038H168A•CoA

Meta-
AAC0038H168A•apramycin•CoA

B-factors
Protein 48.7 90.4 91.2 50.8 53.1
Aminoglycoside N/A 111.0 142.9 N/A N/A
Acetyl-CoA/CoA N/A N/A N/A N/A N/A
Solvent 53.3 86.7 98.0 70.3 105.8
Water 39.6 61.4 72.6 45.7 63.2

R.m.s.d.
Bond lengths, Å 0.004 0.006 0.006 0.014 0.012
Bond angles, ° 0.803 1.071 0.879 1.260 1.118

ND not determined.
aRmerge= ΣhklΣj | Ihkl.j− 〈Ihkl〉|/ΣhklΣjIhk,j, where Ihkl,j and 〈Ihkl〉 are the jth and mean measurement of the intensity of reflection j.
bAll values in brackets and all CC1/2 values refer to the highest resolution shells.
cRpim= Σhkl√(n/n−1) Σnj=1 | Ihkl.j− 〈Ihkl〉|/ΣhklΣjIhk,j.
dR= Σ|Fpobs− Fpcalc | /ΣFpobs, where Fpobs and Fpcalc are the observed and calculated structure factor amplitudes, respectively.
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Using this strategy, we were able to determine the crystal
structures of AAC(3)-IVa enzyme in complex with gentamicin or
apramycin to 2.6 and 2.8 Å, respectively. In both complex
structures, the electron density corresponding to the AG molecule
localized to the cleft between the major and minor subdomains of
the enzyme. Most of the AG substrate interactions with the
protein are mediated by amino acid sidechains from the minor
subdomain (Fig. 4a–c). For the AG substrate in both structures,
the 3-N group is positioned close to residue 154 and proximal to
the presumed location of the thiol of CoA. We observe a similar
substrate orientation in the crystal structures of meta-AAC0038
enzyme complexes, described below, suggesting a common active
site topology for this family.

In the complex structures, the gentamicin molecule spans
across the enzyme’s minor subdomain while the apramycin
molecule is twisted nearly 90° relative to gentamicin. This
difference is reflected in the rotation of the 2-deoxystreptamine
rings of each compound (Fig. 4b). The 2-deoxystreptamine/II
ring of apramycin stacks against the sidechain of Trp63, and its
rotation positioned the central and III rings more into the minor
subdomain cleft and towards Asp67. Notably, these two residues
are contributed from the much shorter hairpin connecting the α4
and α5 helices compared to the equivalent region in the other
enzymes we crystallized. Additionally, Glu185 appears to be a
critical residue for interactions with gentamicin and apramycin as

it positions the 2-deoxystreptamine ring for modification through
interactions with the 1-N of gentamicin or the 5-hydroxyl of
apramycin. Interestingly, Cys190, which is just N-terminal to the
Zn2+ binding site, interacts with the 3-N of gentamicin. Finally,
the C-terminal extension of AAC(3)-IVa corresponding to
residues 236-257 contributes to the interactions with both
gentamicin and apramycin via Glu249 side chain.

We identified a Zn2+ ion binding site in the C-terminal
extension of AAC(3)-IVa structure. This feature may be of only
structural significance since neither this ion nor the sidechains of
its cysteine and histidine ligands formed any interactions with the
AGs. The binding of Zn2+ could stabilize this region and allow
for orientation of the Glu249 residue for AG recognition. The
Zn2+-binding residues are fully conserved across Antibiotic_NAT
Group 1 representatives.

The analysis of the AAC(3)-IVa•gentamicin complex allowed
us to propose a mechanism for this enzyme’s ability to recognize
4,5-disubstituted AGs. In the complex structure, gentamicin’s
5-OH pointed out of the enzyme’s active site. If similarly oriented,
4,5-disubstituted AGs would not cause a steric clash with this
enzyme’s active site. Collectively, these observations show that
AGs can adopt multiple bound orientations facilitated by the
dramatic structural changes in the minor subdomain of AAC(3)-
IVa, thereby supporting broad substrate specificity for AG
modification.
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The meta-AAC0038 enzyme active site’s molecular architecture
allows for activity against 4,5 and 4,6-disubstituted AGs.
Our data presented above demonstrated that the environmental
metagenome-derived meta-AAC0038 enzyme can confer
high and broad resistance to AGs including to the atypical
AG apramycin when expressed in E. coli. Using the catalytically
inactive His168Ala mutant of this enzyme, we were able to
determine the crystal structures of ternary meta-
AAC0038H168A•apramycin•CoA and the binary meta-
AAC0038H168A•acetyl-CoA complexes.

In line with the previously discussed Antibiotic_NAT enzyme
structures, meta-AAC0038 accommodated the substrates in the
negatively charged cleft formed by the minor subdomain, with the
3-N group of apramycin located within 2.6 Å of the sulfhydryl
group of CoA (Fig. 4c). Notably, the I and III rings of apramycin
were positioned out from the active site cleft and did not form
interactions with the enzyme except for hydrogen bonds with the
Asp94 and Asp162 sidechains. The ability to retain this AG
molecule in the active site via very few contacts could explain the
activity of meta-AAC0038 on this substrate resulting in the low-
level resistance to apramycin which was not detected for the other
representatives of Group 3 Antibiotic_NAT enzymes.

AAC(3)-IIIb, another group 3 enzyme, has been previously
characterized in detail for its interactions with 4,6- and 4,5-
disubstituted AGs28. The meta-AAC0038 and AAC(3)-IIIb
structures superimpose with RMSD 0.54 Å across 219 Cα atoms,
share all the minor subdomain structural elements, and show
complete conservation of AG binding residues (Fig. 4c). However,
the position corresponding to Glu223 in AAC(3)-IIIb is occupied
by Asp213 in meta-AAC0038. Glu223 is positioned at the ring I
binding site of apramycin, which may impact the ability of
AAC(3)-IIIb to accommodate this AG as a substrate.

The group 4 enzyme AAC(3)-IIb harbors a restricted active
site. The crystal structure of AAC(3)-IIb represents the first
molecular image of enzymes with AAC(3)-II activity. Its structure
superimposes with RMSD 0.7Å over 221 Cɑ atoms with the pre-
viously characterized AAC(3)-VIa structure32, consistent with our
phylogenetic analysis placing both these enzymes in the group 4 of
the Antibiotic_NAT family. Similarly to the AAC(3)-VIa enzyme32,
the minor subdomain loop of AAC(3)-IIb contains the conserved
Asn208, which is predicted to clash with substituents at position 5
of the AG substrate, thereby explaining the lack of activity toward
4,5-disubstituted AGs. Other notable amino acids in the active site
of AAC(3)-IIa that may restrict the size and positioning of AG
substrates include Tyr66, positioned near the binding location of
the double prime ring (Fig. 1), and Phe97, positioned near the
central 2-deoxystreptamine ring. Altogether, AAC(3)-IIb—like
AAC(3)-VIa—harbors a more restricted active site, consistent with
its limited AG specificity.

AAC(3)-Xa also harbors a restricted AG binding site. As indi-
cated by our AG susceptibility testing, the activity of AAC(3)-Xa is
limited to tobramycin and kanamycin (Fig. 2). To rationalize this
strict specificity, we modeled the position of kanamycin into the
active site of the apoenzyme structure based on the position of
gentamicin bound to AAC(3)-IVa. This analysis suggested that
gentamicin would not be accommodated due to the Tyr79 and
Asp130 residues, which would clash with the 4”-OH group or the
methylated 3”-amine of the corresponding AG substrate, respectively.
This model also provides a hypothesis for the inability of this enzyme
to confer resistance to 4,5-disubstituted AGs, as the 5-substituents
would clash with Glu220 of the enzyme. Based on comparative
analysis of the AAC(3)-Xa and AAC(3)-IVa•apramycin complex
structures, Tyr79 would also introduce a steric clash with this AG in

the AAC(3)-Xa active site. Notably, Tyr79, Asp130, Glu220, and
adjacent active site residues are highly conserved in Antibiotic_NAT
Group 2 (Supplementary Fig. 1), suggesting these are critical deter-
minants for restricting the specificity of these enzymes.

Genetic elements adjacent to meta-AACs suggest possible
mobilization mechanisms. To investigate the potential for lateral
transfer of meta-AACs, we searched for mobile genetic elements
(MGEs) on the AAC-encoding contigs. Of the genes recovered
through FMG, only one - meta-AAC0043 - is syntenic with
multiple MGEs. This sequence is co-localized on our phylogeny
(Fig. 1) with aac(3)-IIe, suggesting a close evolutionary relation-
ship. This finding is in line with the observation that all 28
gentamicin-selected FMG contigs annotated with a gene encoding
an AAC(3)-II family enzyme were syntenic with at least one
MGE. Worryingly, this contig shows extremely high similarity to
sequences found in both chromosomes and plasmids of patho-
gens like E. coli, K. pneumoniae, C. freundii, and V. cholerae
(Fig. 5). Taken together, our analysis demonstrates that repre-
sentatives of Antibiotic_NAT family encoded by the environ-
mental microbiome can be directly mobilized across taxonomic
boundaries to convey resistance in clinically important bacterial
species.

Discussion
The realization that environmental microbial communities are
important reservoirs of ARGs provides keys to understanding the
emergence of antibiotic resistance in pathogenic species. For most
ARG families, the evolution, transferability, and molecular/struc-
tural basis for the activity of their environmental relatives has not
been well characterized. Given that antibiotic use in agricultural and
other anthropogenic settings represents a significant proportion of
global antibiotic deployment, it is vital to understand the scope and
breadth of resistance in the broader global resistome, which may
select for the evolution and transfer of ARGs. This knowledge is
critical to protecting the potency of our current antibiotic arsenal
and designing antibiotics that are less susceptible to ARGs.

In this study, we follow on our previous identification of
multiple Antibiotic_NAT family members in soil-derived meta-
genomic libraries35 through detailed structural and functional
analysis. Firstly, the phylogenetic reconstruction of this family
that we calculated was linked to a comprehensive study of the
substrate specificity profiles of the four main clades, represented
by the AAC(3)-IV, AAC(3)-VII/VIII/IX/X, AAC(3)-III, and
AAC(3)-II/IV enzymes. Secondly, with the additional crystal
structures described in this study and comparison to previously-
available structural information, we conclusively show that this
division is reflected in differences in activity against AG substrates
and in structural diversification localized to the minor subdomain
of the Antibiotic_NAT fold. Given that the minor subdomain is
much less conserved between Antibiotic_NAT family members,
the deficit in molecular information about variations in this
subdomain that would allow for a better understanding of the role
of individual amino acids in this region for substrate specificity
necessitated and inspired our structural investigation into addi-
tional representatives of this family. Thirdly, we show that
environment-derived enzymes of this family, which previously
have not been characterized for molecular determinants behind
their activity against antibiotic substrates, possess resistance-
conferring activities comparable to and sometimes exceeding
those activities of their counterparts derived from clinical isolates.
Fourthly, we show that numerous members of this family inac-
tivate apramycin, an atypical AG that is increasingly being con-
sidered for clinical deployment and for which little has been
known about possible resistance determinants.
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Our structural data includes the crystal structure of the AAC(3)-
IVa enzyme which is the first molecular image of a Group 1
Antibiotic_NAT enzyme. Our extensive structural and functional
characterization demonstrates that this enzyme mediates broad-
spectrum AG resistance, including to 4,5-, 4,6-disubstituted AGs
and the atypical AG apramycin by evolving a more spacious active
site. This is achieved by a C-terminal extension and modifications
of the structure and residue composition of the α4-α5 hairpin of the
minor subdomain of the enzyme which allows for broad spectrum
of AG recognition. The role of the Zn2+-binding site in the
mechanism of action of AAC(3)-IVa and Group 1 enzymes is the
subject of ongoing investigation. After the structures of AAC(3)-
IVa•gentamicin and AAC(3)-IVa•apramycin were publicly avail-
able in the PDB, another group performed structure-guided
mutagenesis on the enzyme38. This analysis confirmed the
Glu185 and Asp187 residues’ important roles for interactions with
AG substrates, and the role of the Asp67 residue in specificity for
gentamicin recognition. This group also generated a double mutant
Cys247Ser/Cys250Ser, which abrogated resistance to both genta-
micin and apramycin, suggesting that Zn2+-binding is necessary for
substrate recognition. However, since no evidence for the effect of
these two mutations on the overall stability of this enzyme was

provided, the direct effect of Zn2+ binding on interaction with AG
substrates remains unclear.

According to our sequence analysis the Group 1 members meta-
AAC0022, meta-AAC0033, meta-AAC0016, and meta-AAC0018
also share the C-terminal extension, the Zn2+-binding residues, and
the shorter sequence corresponding to the α4-α5 hairpin. We
showed that these enzymes are also active against the wide range of
AGs including apramycin.

Antibiotic_NAT Group 3 members showed a high degree of
promiscuity, including activity toward the 4,5- and 4,6-dis-
ubstituted AGs. Notably, the meta-AAC0038 enzyme was also
active against apramycin which inspired our structural analysis of
this activity. According to our meta-AAC0038-apramycin com-
plex structure, the binding of apramycin to this enzyme differed
from its interactions to AAC(3)-IVa. Meta-AAC0038 demon-
strated activity analogous to AAC(3)-IIIb and AAC(3)-IIIc
enzymes, which belonged to the same clade. Other environment-
derived members, including meta-AAC0008, meta-AAC0030,
and meta-AAC0071, were similarly active against 4,5- and 4,6-
disubstituted AGs.

Representatives of Antibiotic_NAT Groups 2 and 4 were the
most restricted in their specificity, and this was reflected in more

1 kbp Species
Genbank 

Accession Contig Origin

meta-AAC0043 tmrB ISKpn11 ISKpn11 IS26 KU545358.1

CP045611.1

CP011611.1

CP021463.1

CP022359.1

MT560079.1

CP034131.1

CP034389.1

CP056583.1

CP051875.1

MK736669.1

AP024499.1

CP048350.1

AP022378.1

CP025402.1

CP077207.1

LN830952.1

CP024813.1

CP027177.1

MT151380.1

Uncultured bacterium

Enterobacter hormaechei

Citrobacter freundii

Salmonella enterica

Shewanella bicestrii

Klebsiella pneumoniae

Klebsiella quasipneumoniae

Escherichia coli

Klebsiella oxytoca

Acinetobacter baumannii

Enterobacter cloacae

Enterobacter asburiae

Raoultella ornithinolytica

Citrobacter portucalensis

Escherichia coli

Enterobacter bugandensis

Enterobacter sp. 247

Enterobacter sp. CRENT-193

Morganella morganii

Vibrio cholerae

FMG library

Chromosome

Plasmid

Plasmid

Plasmid

Plasmid

Plasmid

Chromosome

Plasmid

Chromosome

Plasmid

Plasmid

Plasmid

Chromosome

Plasmid

Plasmid

Plasmid

Plasmid

Chromosome

Plasmid

AAC MGE otherannotation:

Fig. 5 Synteny of meta-AAC0043 with mobile genetic elements. The contig containing meta-AAC0043 was queried against the NCBI nucleotide
database and filtered for highly similar sequences, revealing the presence of similar sequences in a hugely diverse set of taxa. A representative set of
similar genomic segments are shown, with gray bars indicating blastn percent identity ≥99.5%. Many of these matches are from plasmid sequences, and
almost all of them contain ORFs annotated as MGEs (e.g., transposons, insertion sequences, etc.).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03219-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:263 | https://doi.org/10.1038/s42003-022-03219-w |www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


constrained and smaller active sites, as revealed by the structures
of AAC(3)-IIb and AAC(3)-Xa. The environment-derived
enzymes of Group 4, including meta-AAC0032, meta-
AAC0029, meta-AAC0034, meta-AAC0035, and meta-AAC0043,
likewise conferred resistance only to kanamycin and tobramycin.
The crystal structure of AAC(3)-IIb features an active site highly
like that of AAC(3)-VIa, consistent with the 4,6-disubstituted
specificity of Group 4 enzymes.

Additionally, our study expanded the repertoire of AMEs
active against apramycin to include six environment-derived
enzymes, with the Group 1 members meta-AAC0016, meta-
AAC0018, meta-AAC0033, and meta-AAC0022 conferring high-
level apramycin resistance. The presence of these enzymes in
environmental microbial species may be provoked by widespread
apramycin use in agriculture settings. As apramycin is deployed
in the clinic, it is important to be mindful of the possible further
dissemination of these ARGs.

Our analysis of lateral gene transfer signatures in the genetic
vicinity of meta-AAC genes indicates that these genes show low
potential for mobilization, for the most part, with the notable
exception of meta-AAC0043. This conclusion is corroborated by the
separation of meta-AAC and AAC(3) enzyme sequences in each
group within our phylogenetic reconstruction, except for the close
clustering of meta-AAC0008 with AAC(3)-IIIa (67% identical at the
protein level) and meta-AAC0043 with AAC(3)-IIe (96% identical).
While no MGEs were identified in the contig containing the meta-
AAC0008 gene, multiple MGEs were present in the contig harboring
meta-AAC0043. This proximity strongly suggests thatmeta-AAC0043
has mobilized into pathogens, manifesting in the enzyme AAC(3)-
IIe, conferring resistance to 4,6-disubstituted AGs. This precedent
suggests that with further FMG sampling, additional meta-AAC
genes may be identified which represent environmental sources of
clinically relevant Antibiotic_NAT genes.

The metagenomic, structural, and functional data presented in
this study establishes key molecular insights into the molecular
basis for AG recognition by all four clades of the Antibiotic_NAT
family. This provides a deeper understanding of the primary
sequence signatures important for the AG resistance profile
conferred by the corresponding enzymes. Our observation that
environmental members of this family can confer broad, high-
level AG resistance and have already mobilized into pathogenic
species warrants surveillance and FMG sampling to detect new
connections between ARGs in the clinic and the environment.

Methods
Sequence analysis and phylogenetic reconstruction. Previously identified
members of the Antibiotic_NAT family from functional selections of soil
metagenomes35 were aligned with clinically isolated AAC(3) enzyme sequences
and homologs in Genbank identified by BLAST. Sequence alignment was per-
formed using the Clustal Omega server (EMBL-EBI). The phylogenetic recon-
struction was generated from the sequence alignment by MrBayes39 (with gamma-
distributed rates across sites, rate matrix=mixed, 1,000,000 generations for mcmc)
and visualized by using FigTree v1.4.2.

Antibiotic susceptibility testing. Environmental and clinical Antibiotic_NAT
sequences were cloned into the low copy plasmid pGDP3. Expression levels of each
gene were controlled by the strong, constitutive promoter Pbla. Aminoglycoside sus-
ceptibility testing was completed in technical triplicate, single colony dilution repli-
cated across three rows of the same microtiter plate, with our hyperpermeable, efflux-
deficient strain E. coli BW25113 ΔtolCΔbamB following the Clinical and Laboratory
Standards Institute (CLSI) protocols for the microbroth dilution method40. E. coli was
cultured in a cation-adjusted Mueller Hinton broth (CAMHB) arrayed in a 96-well
format. The plates were incubated for 18 h at 37 °C. A Labcyte Echo 550 and Thermo
Combi nL was used for dispensing the antibiotics and a Formulatrix Tempest for
culture dispensing.

Protein purification. E. coli BL21(DE3) Gold was used for meta-AAC0038 and
aac(3)-IVa overexpression. 3 mL overnight culture was diluted into 1 L LB media
containing selection antibiotic ampicillin and grown at 37 °C with shaking. The cell

culture was induced with IPTG at 17 °C once the OD600 reached 0.6-0.8. Cell pellets
were collected by centrifugation at 7000 × g. Ni-NTA affinity chromatography was
used for protein purification. Cells were resuspended in binding buffer [100 mM
HEPES pH 7.5, 500 mM NaCl, 5 mM imidazole, and 5% glycerol (v/v)], then lysed
with a sonicator. The insoluble cell debris was removed by centrifugation at
30,000 × g. The soluble cell lysate fraction was loaded on a 4 mL Ni-NTA column
(QIAGEN) pre-equilibrated with binding buffer, washed with 250 mL washing
buffer [100 mM HEPES pH 7.5, 500 mM NaCl, 30 mM imidazole, and 5% glycerol
(v/v)], and N-terminal His6-tagged protein was eluted with elution buffer [100 mM
HEPES pH 7.5, 500 mM NaCl, 250 mM imidazole and 5% glycerol (v/v)]. The
His6-tagged proteins were then subjected to overnight TEV cleavage using 50 μg of
TEV per mg of His6-tagged protein in binding buffer and dialyzed overnight
against the binding buffer. The His6-tag and TEV were removed by re-running the
protein over the Ni-NTA column. The tag-free protein was then dialyzed in
crystallization buffer (50 mM HEPES pH 7.5, 500 mM NaCl) overnight, and the
purity of the protein was analyzed by SDS-polyacrylamide gel electrophoresis.

Crystallization and structure determination. The meta-AAC0038 apoenzyme
crystal was grown at room temperature using the vapor diffusion sitting drop method
solution containing 20mg/mL protein, 2.5M ammonium sulfate, 0.1M Bis-Tris pro-
pane pH 7, and 10mM gentamicin. For the AG-bound structures of meta-AAC0038
and AAC(3)-IVa, we utilized the catalytically inactive mutants His168Ala and
His154Ala. The meta-AAC0038H168A-apramycin-CoA complex was co-crystallized
from solution containing 20mg/mL protein, 20% PEG 3350, 50mM ADA pH 7,
and 10mM apramycin. The AAC(3)-IVa apoenzyme was crystallized as
selenomethionine-derivative from a solution containing 30mg/mL protein, 0.2M
magnesium chloride, 0.1M Tris pH 8.8, and 25% PEG3350. The AAC(3)-IVaH154A-
apramycin complex was co-crystallized from a solution containing 0.1M Hepes pH 7.6,
30% PEG 1K, and 2.5mM apramycin; the AAC(3)-IVaH154A-apramycin complex was
co-crystallized from a solution containing 0.1M Hepes pH 7.5, 30% PEG 1K and
1mM gentamicin.

Diffraction data at 100 K were collected at a home source Rigaku Micromax
007-HF/R-Axis IV system, at beamline 21-ID-G of the Life Sciences Collaborative
Access Team at the Advanced Photon Source (MAR CCD detector with 300 mm
plate), or beamline 19-ID of the Structural Biology Center of the Advanced Photon
Source, Argonne National Laboratory. All diffraction data were processed using
HKL300041. For meta-AAC0038, the apoenzyme structure was solved by Molecular
Replacement (MR), using the structure of YokD34 and the CCP4 online server
Balbes program. The apramycin complex structure was used solved by MR using
the apoenzyme model. For AAC(3)-IVa, the apoenzyme structure was solved by
MR using the structure of FrbF (PDB 3SMA)33 and the CCP4 online server
MoRDa program, and the AG bound structures were solved by MR using the
apoenzyme model.

All model building and refinement were performed using Phenix.refine42 and
Coot43. Atomic coordinates have been deposited in the Protein Data Bank with
accession codes 5HT0, 6MMZ, 6MN0, 7KES, 6MN3, 6MN4, 6MN5, 7LAO, and
7LAP. Dimerization interfaces were determined using the PDBePISA server44.
Structural homologs were identified in the PDB using the Dali-lite server45 or the
PDBeFold server46.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study are available in Supplementary Data 1 (MIC data);
Protein Databank (crystal structures) under accession codes 5HT0, 6MMZ, 6MN0, 7KES,
6MN3, 6MN4, 6MN5, 7LAO, and 7LAP; or NCBI Database (i.e., FMG sampling) with
accession codes indicated in Fig. 5.
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