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ABSTRACT Bacteroides fragilis group (BFG) species are common members of the
human microbiota that provide several benefits to healthy hosts, yet BFG are also
the most common anaerobes isolated from human infections, including intra-ab-
dominal infections, abscesses, and bloodstream infection. Compared to many other
anaerobes associated with disease, members of the BFG are more likely to be resist-
ant to commonly used antimicrobials, including penicillin (.90% resistant), carbape-
nems (2 to 20% resistant), and metronidazole (0.2 to 4% resistant). As a result, infec-
tion with BFG bacteria can be associated with poor clinical outcomes. Here, we
discuss the role of BFG in human health and disease, proposed taxonomic reclassifi-
cations within the BFG, and updates in methods for species-level identification. The
increasing availability of whole-genome sequencing (WGS) supports recent proposals
that the BFG now span two families (Bacteroidaceae and “Tannerellaceae”) and multiple
genera (Bacteroides, Parabacteroides, and Phocaeicola) within the phylum Bacteroidota.
While members of the BFG are often reported to “group” rather than “species” level in
many clinical settings, new reports of species-specific trends in antimicrobial resistance
profiles and improved resolution of identification tools support routine species-level
reporting in clinical practice. Empirical therapy may not be adequate for treatment of
serious infections with BFG, warranting susceptibility testing for serious infections. We
summarize methods for antimicrobial susceptibility testing and resistance prediction
for BFG, including broth microdilution, agar dilution, WGS, and matrix-assisted laser
desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). We examine
global trends in BFG antimicrobial resistance and review genomics of BFG, revealing
insights into rapid activation and dissemination of numerous antimicrobial resistance
mechanisms.

KEYWORDS Bacteroides, Parabacteroides, Phocaeicola, MALDI-TOF MS, whole-genome
sequencing, antibiotic resistance, antimicrobial agents, taxonomy

Bacteroides, Parabacteroides, and Phocaeicola species are among the anaerobic
organisms most frequently recovered from human infections (1). As notable mem-

bers of the commensal microbiota residing in human mucosal sites, most notably the
gut, these anaerobes can cause devastating infections when they gain access to
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normally sterile body compartments following trauma, surgery, or mucosal barrier dis-
ruption (for example, in the setting of cancer). In the absence of appropriate antimicro-
bial therapy, these infections can have mortality rates as high as 50% (2). Accordingly,
empirical antimicrobial regimens in patients with increased risk target these organisms
(3), and typically clinical microbiology laboratories will take steps to isolate and report
these organisms from clinical specimens, even those that are grossly polymicrobial.

Often referred to collectively as the Bacteroides fragilis group (BFG), this collection
of .20 distinct Bacteroides, Parabacteroides, and Phocaeicola species accounts for a
majority of anaerobic clinical infections in humans (1). Historically, identification meth-
ods lacked resolution to differentiate members of the BFG; thus, when encountered
clinically, these isolates were rarely reported to species level. However, implementation
of new molecular technologies such as matrix-assisted laser desorption ionization–
time of flight mass spectrometry (MALDI-TOF MS) in clinical laboratories may facilitate
species-specific reporting (4). Growing evidence of species-related disease associations
further advances the support for the clinical utility of routine species-level reporting.

BFG infections have become increasingly difficult to treat, with reports of increasing
resistance to frontline anaerobic agents worldwide (5). Additionally, antimicrobial resist-
ance (AMR) profiles vary across members of the BFG (4, 6). In the absence of anaerobic
susceptibility testing in most clinical laboratories, species-level insights into predicted
susceptibility patterns may help guide patient management and prevent treatment
failures.

In light of these developments, clinical laboratories are armed with new tools to
improve diagnosis and treatment of BFG infections. In this minireview, we describe the
clinical significance of the BFG in human health and disease and highlight recent taxo-
nomic reclassifications within the BFG and insights informed by comprehensive
genomic analysis (7, 8). Additionally, we review methods for growth and recovery of
BFG from clinical specimens and examine methods for species-level identification (9,
10). Trends in antimicrobial resistance are described, along with developments in phe-
notypic susceptibility testing and genomic insights into antimicrobial resistance (4, 11).

TAXONOMY, TAXONOMIC REVISIONS, AND STRAIN TYPING

Taxonomy and species-level identifications within the BFG hold great clinical value
as this group of bacteria is phylogenetically diverse (Table 1 and Fig. 1A) and antimi-
crobial resistance (AMR) patterns vary between BFG species (4, 7). Historically, BFG tax-
onomic classifications were determined based on 16S rRNA gene sequencing (7), and
several taxonomic revisions of the BFG have been proposed over the last few decades,
including the reclassification of Bacteroides distasonis, Bacteroides merdae, and Bacteroides
goldsteinii to a new genus, Parabacteroides, within the proposed “Tannerellaceae” family
(at the time of writing, this family name is proposed but not fully validated) (8, 12). For dis-
cussion of these taxa, the genera and species deemed to be part of the BFG as defined in
this review are outlined in Tables 1 and 2. In addition to B. fragilis, Bacteroides thetaiotaomi-
cron, Parabacteroides distasonis, Bacteroides vulgatus, Bacteroides ovatus, and Bacteroides
uniformis are the most common species encountered clinically (1, 6, 13, 14). Despite diver-
gence with Bacteroides at the family level, Parabacteroides spp. are commonly included
with Bacteroides in BFG clinical surveys.

More recently, improvements in whole-genome sequencing (WGS) technology and
the introduction of more comprehensive species delimitation methods, such as aver-
age nucleotide identity (ANI) (5) and genome BLAST distance phylogeny (GBDP) (7),
have led to major restructuring of several species within the Bacteroidota phylum. A recent
study has proposed reclassifying several Bacteroides species into the Phocaeicola genus
including the notable BFG pathogens B. vulgatus, Bacteroides dorei, and Bacteroides massi-
liensis, based on a comprehensive study of over 1,000 Bacteroides genomes using GBDP to
infer taxonomic relationships (7). We have also demonstrated the genetic distinction
between strains derived from the Bacteroides, Parabacteroides, and Phocaeicola genera (4)
(Fig. 1A). Although the proposed reclassifications have not yet been validated by the
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International Journal of Systemic and Evolutionary Microbiology (IJSEM) (Tables 1 and 2), the
proposed nomenclature has been generally supported, is likely to be accepted and imple-
mented, and is thus utilized throughout the remainder of the paper.

A surprising amount of genetic diversity is apparent for the namesake BFG species,
Bacteroides fragilis sensu stricto (BFSS). Multiple WGS studies indicate that division I and
division II BFSS bacteria are genetically divergent at the species level (4, 15). Division I
BFSS harbors the cephalosporinase cepA and is generally susceptible to frontline b-lactam
regimens, and the BFSS bacteria that colonize healthy human guts typically fall within this
division (16). Division II BFSS isolates are capable of achieving high-level carbapenem re-
sistance through insertion sequence (IS)-mediated activation of the chromosomal carbape-
nemase gene cfiA, which is absent in division I BFSS. Beyond the b-lactamase gene profile,
division I and II BFSS bacteria have substantial genetic diversity in comparison of both the
core and accessory genomes (4). With an ANI value of less than 0.95 between the two divi-
sions, division I and II BFSS bacteria are distinct genomospecies, with notable differences
in AMR and pathogenicity (4).

CLINICAL SIGNIFICANCE AND DISEASE ASSOCIATIONS

Like other anaerobic bacteria, BFG organisms colonize mucosal surfaces of their mam-
malian hosts. Comprising roughly 25% of the human intestinal microbiota, Bacteroides
species contribute to carbohydrate metabolism and niche protection to facilitate a
healthy gut (17). Breaches of these mucosal sites (for example, in the setting of trauma,
cancer, or surgery) facilitate access to normally sterile body compartments where these
commensal organisms can act as pathogens (1, 18).

Despite being outnumbered by other Bacteroides species 10- to 100-fold in the
human colon, BFSS is the predominant anaerobic microorganism isolated from clinical
specimens, regardless of the site of infection. A number of virulence factors contribute

TABLE 1 Taxonomy of members of the Bacteroides fragilis group and other Bacteroides spp.

Family Genus Species
Bacteroidaceae Bacteroides B. acidifaciens

B. caccae
B. cellulosilyticus
B. eggerthii
B. faecis
B. fragilis division I
B. fragilis division II
B. helcogenes
B. intestinalis
B. nordii
B. ovatus
B. pyogenes
B. salyersiae
B. stercoris
B. thetaiotaomicron
B. uniformis
B. xylanisolvens

Phocaeicola P. coprocola
P. dorei
P. massiliensis
P. plebeius
P. vulgatus

Tannerellaceae Parabacteroides P. distasonis
P. goldsteinii
P. gordonii
P. johnsonii
P. merdae
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FIG 1 Phylogeny and antimicrobial resistance mechanisms in BFG bacteria. (A) Unrooted neighbor-joining phylogenetic tree
(FastTree v2.1.7) generated from a core genome alignment (Roary v3.12.0, minimum BLASTP identity set to 70%) of major BFG
type strain assemblies including B. fragilis division I (GCF_000025985.1), B. fragilis division II (GCA_021405735.1), Bacteroides salyersiae
(GCF_000381365.1), Bacteroides pyogenes (GCF_000428105.1), B. thetaiotaomicron (GCF_016103195.1), B. faecis (GCF_000226135.1), Bacteroides
caccae (GCF_002222615.2), B. ovatus (GCF_020149745.1), Bacteroides xylanisolvens (GCF_000210075.1), B. intestinalis (GCF_000172175.1),
Bacteroides cellulosilyticus (GCF_000158035.1), B. uniformis (GCF_016117815.1), Bacteroides eggerthii (GCF_900445565.1), Bacteroides stercoris
(GCF_000154525.1), Phocaeicola massiliensis (GCF_000373085.1), P. vulgatus (GCF_016766915.1), P. dorei (GCF_013009555.1), Phocaeicola

(Continued on next page)
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to the pathogenic potential of BFSS, including synthesis of adhesin and capsule, rela-
tive oxygen tolerance, and antigenic variation of surface structures. These are reviewed
extensively elsewhere and will not be discussed in detail here (1, 19).

Intra-abdominal abscesses and bloodstream infection (BSI) are the most common
infections caused by Bacteroides species in both adult and pediatric patients (1). BFG
isolates can also be recovered from deep-seated abscesses, perforated appendicitis,
necrotizing skin and soft tissue, and bone and joint infections (1). Although endocardi-
tis with anaerobic organisms is rare, it does occasionally occur as a result of hematoge-
nous spread in patients with gastrointestinal (GI) malignancy or other intra-abdominal
infections; in those cases, BFG organisms are the most common anaerobic bacteria
reported (1). Bloodstream infections (BSIs) are a common clinical presentation for BFG
infection. Among anaerobic BSIs, Bacteroides spp. account for the majority of organ-
isms isolated, with BFG accounting for nearly half of anaerobic BSIs (1). Infections with
BFSS are associated with reported mortality up to 40%, but this can be mitigated with
effective antimicrobial treatment (2, 20).

One virulence factor, the Bacteroides fragilis toxin (BFT), also known as fragilysin,
has been implicated in a number of diseases (18). Enterotoxin-producing B. fragilis
(ETBF) induces secretory diarrhea in animals and has also been isolated more fre-
quently in human patients with diarrhea than in healthy individuals (18). Additionally,
ETBF is thought to contribute to chronic colitis and colorectal cancer (CRC) by propa-
gating the chronic inflammatory environment predisposing to disease (18, 21).
However, the exact mechanisms underlying these disease correlations have not yet
been fully elucidated. A number of host and additional microbial factors are also likely
to contribute to these disease manifestations.

Among non-fragilis Bacteroides species, B. thetaiotaomicron has long been established
as an important component of the healthy gut (17). The B. thetaiotaomicron genome is
exquisitely adapted to fine-tune regulation of extensive carbohydrate utilization systems
in concert with host nutrient sources, facilitating a mutualistic relationship between bac-
teria and host (1). Despite its known contributions to the healthy gut, B. thetaiotaomicron
is often the most common non-fragilis BFG species reported from anaerobic infections
and has been isolated from abdominal sites, blood, cerebrospinal fluid (CSF), and skin
and soft tissue infections (1, 13). Another non-fragilis BFG species frequently isolated
from similar sites is B. ovatus. One study has reported that non-fragilis BFG species are
more likely to present clinically as bacteremia, especially when the patient outcome is
death (22). However, we and others have previously reported no difference in the clinical
sites from which B. fragilis and non-fragilis BFG species are recovered (4, 23). The role of
other non-fragilis BFG species in health and disease is still being elucidated. Recent reports

TABLE 2 Revised and previous taxonomic classifications of members of the Bacteroides
fragilis group and other Bacteroides spp.

Revised taxonomic designation Previous designation Member of BFG
Phocaeicola dorei Bacteroides dorei Yes
Phocaeicola vulgatus Bacteroides vulgatus Yes
Phocaeicola massiliensis Bacteroides massiliensis Yes
Parabacteroides gordonii Bacteroides gordonii Yes
Parabacteroides goldsteinii Bacteroides goldsteinii Yes
Parabacteroides distasonis Bacteroides distasonis Yes
Parabacteroides merdae Bacteroides merdae Yes
Pseudoflavonifractor capillosus Bacteroides capillosus No
Campylobacter ureolyticus Bacteroides ureolyticus No
Alistipes putredinis Bacteroides putredinis No

FIG 1 Legend (Continued)
coprocola (GCF_000154845.1), Phocaeicola plebeius (GCF_000187895.1), Parabacteroides johnsonii (GCF_000156495.1), Parabacteroides
gordonii (GCF_020297465.1), Parabacteroides goldsteinii (GCF_000969835.1), P. distasonis (GCF_020735945.1), and Parabacteroides merdae
(GCF_900445495.1). (B) Molecular determinants of resistance in BFG bacteria. (C) Major genetic ARG mobilization and activation
strategies in BFG.
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have implicated Parabacteroides distasonis as both a potential probiotic and a pathogen
with emerging AMR (24). Similarly, reports of invasive infection with Phocaeicola doreimay
complicate purported beneficial uses (25).

METHODS FOR GROWTH IN CULTURE

A number of preanalytical factors impact the ability to recover BFG from clinical
specimens. Cultures for anaerobic bacteria require specialized transport conditions,
such as dedicated anaerobic transport medium (26). Surface swabs should not be sent
for anaerobic culture; ideal specimens are tissue or fluid, especially that obtained dur-
ing surgery (26).

BFG bacteria are recovered on general-purpose enriched media for anaerobic
microorganisms, such as Brucella blood agar (BBA), CDC anaerobe agar, or Schaedler
blood agar (26). Recovery of BFG from mixed cultures can be enhanced from poten-
tially polymicrobial specimens by the addition of selective agar, such as Bacteroides
bile esculin (BBE) agar, on which members of the BFG will grow and exhibit characteris-
tic brown to black colonies; the growth of most other anaerobic bacteria is inhibited
(26). Phocaeicola vulgatus does not always form black colonies (26).

A recent report describes a novel selective medium for the recovery of BFSS in clini-
cal specimens (9); along with a brain heart infusion agar base, the medium is supple-
mented with yeast extract, cysteine, bile salts, vitamin K, hemin, glucose, esculin, ferric
ammonium citrate, bromothymol blue, novobiocin, gentamicin, and kanamycin. BFSS
isolates are large yellow colonies on the agar, with blackening of the medium after 48 h
of incubation. The recovery of BFSS from clinical specimens is enhanced using this me-
dium compared to conventional medium, and the growth of most other anaerobic bac-
teria is inhibited. While this medium has not been widely adopted, it may be useful for
future surveillance studies.

BFG is detected efficiently in the anaerobic bottle of commercially available blood
culture systems (27–29). The time to blood culture positivity for BFG is relatively short;
for example, one report notes the mean time to blood culture positivity being 32 h
and 99% of blood cultures with BFG signaling positive within 60 h (28).

METHODS FOR IDENTIFICATION

BFG bacteria are pleomorphic Gram-negative bacilli (size range 1.5 to 6 mM) that
are nonpigmented, nonmotile, and encapsulated, and isolates are bile resistant (i.e.,
will grow in the presence of 20% bile) (11, 26). Catalase and indole activities vary by
species and can be useful to aid identification to species level if phenotypic methods
are used (11, 26). BFG bacteria are resistant to all three anaerobic special-potency disks
(kanamycin [1,000 mg], vancomycin [5 mg], and colistin [10 mg]) which can be used for
presumptive identification of BFG (11, 26).

Although historically BFG bacteria were often grouped together for clinical report-
ing, in the context of antimicrobial therapy implications, virulence profile differences,
and clinical significance, laboratories should consider reporting members of the group
to species level when possible. MALDI-TOF MS is being increasingly used for microor-
ganism identification in clinical specimens, and overall, this method demonstrates
excellent performance characteristics for the species-level identification of anaerobic
bacteria, including BFG (30, 31). One recent study (10) interrogated 138 BFG isolates
representing 8 Bacteroides spp. and 2 Parabacteroides spp. collected between 2010 and
2018 using three MALDI-TOF MS systems (Clin-ToF-II/Bioyong Explore v.3.2, Autof
MS1000/Autof Acquirer v.1.0.123/Analyzer v.1.0.50, and Vitek MS/IVD database v.3.2),
as well as the Vitek2 ANC card; 16S rRNA gene sequencing was the reference method
for comparison. The investigators report that Autof MS identified 136 of the 138 iso-
lates accurately to species level, Vitek MS identified 130 of the 138 isolates, Clin-ToF-II
identified 130 of the 138 isolates, and Vitek2 ANC identified 131 of the 138 isolates.
The biggest challenges were reported with accurate identification of some of the spe-
cies that have recently undergone taxonomic revision, including P. dorei and
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Bacteroides intestinalis. A recent evaluation of 174 isolates representing 9 species with
Bruker Biotyper and Vitek MS (4) found 91% species agreement for Bruker Biotyper
with the Research Use Only (RUO) database and 90% species agreement with the Vitek
MS Knowledge Base v.3.0 compared to WGS, with challenging species being
Bacteroides faecis, B. ovatus, and P. vulgatus. Similarly, another investigation noted 97%
accuracy for Bacteroides species isolates representing 22 species with Bruker Biotyper
and 96% with Vitek MS, with variable accuracy for P. dorei, B. faecis, and Bacteroides
nordii (32).

ANTIMICROBIAL SUSCEPTIBILITY TESTING

A number of methods are reported in the literature for the assessment of antimicro-
bial susceptibility of anaerobic organisms including BFG. Details of these methods and
their performance with anaerobic organisms have been reviewed extensively else-
where (33, 34). Here, we briefly review more established methods and focus discussion
of recent developments in anaerobic antimicrobial susceptibility testing (AST) pertain-
ing specifically to the BFG.

The agar dilution (AD) method, as described by CLSI-M11-A8 (35, 36), is largely recog-
nized by the Clinical and Laboratory Standards Institute (CLSI) as the gold-standard
method for anaerobic AST (33). Briefly, different concentrations of antimicrobial agents
are incorporated into media on which standard suspensions of bacteria are spotted.
Following (anaerobic) incubation at 36°C 6 1°C for 42 to 48 h, plates are observed to
determine the lowest antibiotic concentration that inhibits growth (MIC). AD is more
suited to batch testing of numerous isolates, and due to the labor, time, and expertise
required to utilize this method, most clinical laboratories cannot adopt it for routine use.

Broth microdilution (BMD) is another method that allows for testing different con-
centrations of multiple antibiotics in a 96-well plate format. Following inoculation of
microtiter plates with standard bacterial suspensions, plates are read after 46 to 48 h
of incubation at 36°C 6 1°C to determine the MIC. While the availability of commercial
panels and comparable performance of in-house panels facilitate use of this method
worldwide (37), it is endorsed by CLSI only for Bacteroides spp. and Parabacteroides
spp. (36). However, recent work from Europe suggests adequate performance of some
commercial BMD methods compared to AD across Gram-positive and Gram-negative
anaerobes more broadly (38).

Until recently, disk diffusion for anaerobic AST was not recommended by any interna-
tional standards associations as a result of poor correlation with gold-standard AD (34).
However, recent work out of The European Committee on Antimicrobial Susceptibility
Testing (EUCAST) developmental laboratory in Europe has demonstrated the feasibility
of a disk diffusion method with high reproducibility and concordance with agar dilution
with BFG (39). These findings were extended to other rapidly growing anaerobes and
further validated across clinical laboratories in Europe (unpublished but available online
at https://www.eucast.org/videos_and_online_seminars/online_seminars/). This work
has made several changes compared to previously reported methods (40, 41) including
(i) the use of fastidious anaerobe agar (FAA) as opposed to Brucella blood agar (BBA), (ii)
species-specific zone diameter breakpoints that largely respect wild-type population dis-
tributions, and (iii) strict adherence to methodology (medium composition, incubation
time, anaerobiosis conditions, etc.). EUCAST standards for testing include agar dilution
and disk diffusion for Bacteroides spp. Testing is performed on FAA, and agar dilution is
incubated at 35 to 37°C for 48 h; disk diffusion is incubated at 35 to 37°C for 16 to 20 h
(42). However, FAA is not commercially available nor routinely used in the United States,
potentially limiting use of EUCAST-based disk diffusion methods.

Gradient diffusion (GD) testing is the most widely utilized method for anaerobic
AST among laboratories performing anaerobic susceptibility testing (33). Plastic strips
impregnated with an increasing gradient concentration of an antimicrobial are placed
onto Brucella blood agar with hemin and vitamin K preinoculated with a lawn of bacte-
ria from a standardized suspension. Following at least 24 h of incubation (according to
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the manufacturer’s instructions), the MIC is read at the concentration at which the
ellipse of inhibition crosses the test strip. GD testing is, in general, more expensive
than other methods but is flexible and relatively easy to perform, allowing for the
assessment of multiple antibiotics simultaneously and providing MIC values.

Overall, comparisons of BMD and GD are favorable with high categorical and essen-
tial agreement reported across methods for BFG (43). Notably, false metronidazole re-
sistance has been reported when adequate anaerobiosis conditions are not met (44).
Recently, concerns regarding detection of resistance to amoxicillin-clavulanate (AMC)
among BFSS isolates by using gradient diffusion strips have been reported in Europe
(45). These concerns arise from contrasting recommendations regarding the concen-
tration of the b-lactamase inhibitor clavulanate. CLSI breakpoints are based on a test-
ing methodology of AMC at a 2:1 ratio (36), while EUCAST breakpoints are based on
testing AMC at a 2-mg/L fixed ratio of clavulanate (46). Commercial AMC GD strips are
available at both a 2:1 ratio (Etest [bioMérieux] and MTS [Liofilchem]) and a fixed clavu-
lanate concentration of 2 mg/L (MTS; M.I.C.E.; Oxoid Thermo Fisher Scientific). Interpretive
criteria must follow the method used to avoid misclassification of resistant isolates as sus-
ceptible (45).

MALDI-TOF MS has been reported as a method for detection of carbapenem resist-
ance in BFSS. Early reports demonstrate the ability of the Bruker Daltonics MALDI
Biotyper 2.0 system to successfully differentiate main spectra of BFSS isolates harbor-
ing the chromosomal gene cfiA that confers resistance to all b-lactam antibiotics
including carbapenems (division II) from cfiA-negative B. fragilis isolates (division I) (47,
48). However, detection of cfiA positivity alone in BFSS isolates does not always indi-
cate phenotypic carbapenem resistance, as optimal CfiA expression requires upstream
insertion sequence (IS) elements.

The MALDI Biotyper can also be used to assess carbapenem hydrolysis activity (49,
50). These methods detect a normalized ratio of the carbapenem-specific mass spectral
peak intensities following incubation with a test isolate compared to that of the non-
hydrolyzed carbapenem. Despite outperforming traditional phenotypic carbapene-
mase assays retrofitted for anaerobic bacteria, these methods have yet to be widely
evaluated or adopted.

Other phenotypic methods for carbapenemase detection in BFSS have been utilized
with various levels of success. One study reports that the Carba-NP assay detects carba-
penemase activity with .90% sensitivity and specificity in BFSS isolates compared to
the presence of upstream IS and cfiA via PCR (51). However, another study found that
among 29 division II BFSS (cfiA-positive) isolates with a meropenem MIC range of 1 to
.32 mg/mL, only 6 were carbapenemase positive by Carba-NP, of which 5 had a mero-
penem MIC of $16 mg/mL. Twenty-three (79%) isolates were carbapenemase positive
by disk diffusion synergy, while all 29 isolates were carbapenemase positive by a
MALDI-TOF-based method (STAR-Carba) (50). The authors suggest that carbapenemase
detection by both Carba-NP and disk diffusion synergy tests is meropenem MIC de-
pendent. More recently, an adaptation of the modified carbapenem inactivation
method (mCIM) for use with BFSS named the “Ana-CIM” was proposed and clinically
validated in a multicenter study (52). The Ana-CIM utilizes reagents readily available in
clinical labs capable of performing anaerobic identification and requires 6 h of incubation
of a test BFSS isolate with a meropenem disk in anaerobic media and under anaerobic con-
ditions. The meropenem disk is then assessed for activity against a pan-susceptible
Escherichia coli indicator strain following overnight incubation on Mueller-Hinton agar in air.
BFSS isolates producing a carbapenemase result in a meropenem zone size of #8 mm
against the indicator E. coli strain. Compared to ertapenem susceptibility tested by GD and
interpreted with CLSI breakpoints, the Ana-CIM had 88% category agreement (CA) with 0
very major errors and 11%major error and 7%minor error rates and improved performance
($92% CA) when meropenem and/or EUCAST criteria were utilized as the reference
method (52).
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ANTIMICROBIAL RESISTANCE—SUSCEPTIBILITY PATTERNS AND GENETIC MECHANISMS
OF RESISTANCE

BFG species demonstrate increasingly high rates of AMR and a wide variety of re-
sistance mechanisms in comparison to other anaerobic pathogens (Fig. 1B) (1). Several
BFG species are long-term residents of the commensal gut microbiota in healthy hosts,
and the human gut can serve as a reservoir for antimicrobial resistance gene (ARG) ac-
quisition and dissemination among BFG and non-BFG species (1, 53), which may limit
effective treatment options for opportunistic infections. Despite the potential for inher-
ent or acquired resistance mechanisms, historically, susceptibility testing for Bacteroides
and Parabacteroides spp. was not routinely performed due to predictable susceptibility
patterns. If anaerobic antimicrobial susceptibility testing (AST) was performed, it was lim-
ited to isolates recovered from invasive sites or complicated infections or in the setting
of suspected treatment failure. Additionally, lack of consensus in interpretive criteria and
of availability of methods that are both easy to use and cost-effective has limited wide-
spread implementation of anaerobic AST across most clinical labs, hampering the ability
to detect changing trends in susceptibility of anaerobic microorganisms. Despite these
challenges, recent data suggest that resistance to some anti-anaerobic agents (such as
clindamycin, b-lactam–b-lactamase inhibitor combinations, and carbapenems) is on the
rise, supporting the need for routine AST in clinical practice or, at a minimum, regular
and comprehensive susceptibility surveys of anaerobic organisms isolated from serious
infections, particularly those with BFG (5, 54).

b-Lactam agents. Bacteroides and Parabacteroides spp. are still considered intrinsi-
cally resistant to penicillin and ampicillin via b-lactamase production, with .90% re-
sistance reported globally (Table 3). However, susceptibility to other b-lactam agents
including cefotetan, cefoxitin, and ceftriaxone is variable (Table 3). A recent U.S. survey
reports cefoxitin resistance rates of .5% across all BFG isolates tested but higher in
non-fragilis Bacteroides spp. than in BFSS (9.1% versus 3.5%), increasing up to 15% in B.
ovatus and P. distasonis (6). Similarly, reduced susceptibility to cefoxitin was observed
more frequently in non-fragilis Bacteroides spp. in a Canadian survey from 2012 to
2019 (55). In parts of Europe, cefoxitin resistance rates ranging from 8% to 74% have
been reported (56).

b-Lactam combination agents. Globally, resistance to b-lactam combination agents
remains low but may be elevated in some regions (Table 3). While several countries in
Europe report rates of resistance to piperacillin-tazobactam to be ,10%, recent surveys in
China and Japan report 34% resistance to amoxicillin-clavulanate (AMC) and 11% to 12%
resistance to piperacillin-tazobactam (57, 58). Similarly, some studies in Europe and the
United States report higher rates of resistance to b-lactam combination agents in non-fra-
gilis Bacteroides species than in BFSS (Table 3).

Resistance to b-lactam agents in BFG isolates is mediated by endogenous and acquired
b-lactamases which vary by species (4). The CepA cephalosporinase is the most frequently
detected b-lactamase, which is chromosomally encoded in division I BFSS and can be
inhibited by b-lactamase inhibitors such as tazobactam, sulbactam, and clavulanic acid
(59). Genes encoding another b-lactamase, Cfx are also commonly determined in clinical
isolates (4, 60).

The known evidence for the role of penicillin-binding proteins (PBPs) and porins in
b-lactam resistance in BFG is summarized in a previous review in 2007 (1), showing
associations between reduced PBP affinity for various b-lactam agents and changes in
porin structure as contributions toward b-lactam resistance in BFG. However, since
then little evidence has emerged to further establish the role of PBPs and porins in re-
sistance, and the available studies are largely associative. WGS has demonstrated the
presence of at least 8 PBPs and 10 porins in a collection of 194 BFG isolates (4). With
the aid of WGS data, complementation assays would show direct correlations between
b-lactam resistance determinants (b-lactamases, PBPs, and outer membrane proteins)
and phenotypic resistance and provide much-needed mechanistic insights on b-lac-
tam resistance in BFG.
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Carbapenems. Among b-lactam antibiotics, the carbapenems have the broadest
coverage against anaerobic organisms. While carbapenem resistance rates among BFG
isolates in the Americas have been ,5%, resistance is higher in other regions, with in-
termediate/resistant isolate rates up to 20% reported across Europe and Asia (57, 58).
Interestingly, carbapenem resistance appears to be higher in BFSS isolates than in non-
fragilis Bacteroides species (Table 3).

Resistance to carbapenems in BFG is frequently associated with the cfiA gene
encoding a metallo-b-lactamase that is activated by upstream IS elements (4). Division
II BFSS harbors chromosomal cfiA and comprises the majority of carbapenem-resistant
BFG isolates (4, 61). At least 28 variants of the cfiA gene paired with multiple classes of
insertion sequences have been observed (62). Decreased carbapenem susceptibility
has been noted in the absence of cfiA in BFSS and other BFG species, although the
underlying mechanism is unknown (60, 63). We and others have identified previously
uncharacterized b-lactamases in cfiA-negative BFG isolates (4). Overexpression of
native efflux systems has been shown to contribute to reduced carbapenem susceptibility
(57). Alterations in a BFSS penicillin-binding protein, PBP2Bfr, were shown to contribute to
imipenem resistance in clinical isolates (64). Porin loss is another hypothetical mechanism
of reduced carbapenem susceptibility but has not been studied extensively in the BFG.

Metronidazole. Metronidazole remains an effective agent for the treatment of
most anaerobic bacteria, including BFG. Worldwide, susceptibility rates remain high
(.90%) across all species (Table 3). However, in one report out of Pakistan, 20% metro-
nidazole resistance was reported among BFG isolates collected in 2014 to 2017 (65).
This is in stark contrast to the 3% of BFSS isolates testing metronidazole resistant
reported from a survey in the same region conducted just 3 to 7 years prior (2010 to
2011), suggesting the potential for a rapid rise of metronidazole resistance (65, 66).
Carbapenem and metronidazole co-resistance is rare but has been reported in multiple
regions (6, 60, 66, 67).

Metronidazole resistance in BFG is most often associated with the presence of nim
genes encoding a 5-nitroimidazole reductase, of which there are at least 10 isoforms
reported so far (68). Similar to cfiA-mediated carbapenem resistance, nim genes can
also be activated by ISs and are either plasmid based or chromosomal and commonly
associated with mobilizable transposons. Overexpression of efflux machinery in BFG as
well as recA, encoding a DNA repair protein, has been shown to confer metronidazole
resistance (69, 70), which may explain observed metronidazole resistance in BFG iso-
lates that lack nim genes.

Other agents and mechanisms of acquired resistance. Like other anaerobes,
Bacteroides and Parabacteroides spp. are inherently resistant to aminoglycosides as
antimicrobial activity of these agents require oxygen (1). Although they were initially
widely used as empirical anti-anaerobic agents, high non-susceptibility rates (20 to
60%) have now been reported for clindamycin and moxifloxacin worldwide, limiting
their clinical utility (Table 3) (3, 5, 54, 56). The erm genes, which are members of the
macrolide-lincosamide-streptogramin B (MLS) resistance gene family, are associated
with clindamycin and erythromycin resistance and are often carried with tet genes con-
ferring tetracycline resistance through either ribosomal protection (tetQ) or tetracycline
inactivation (tetX) (53). Carriage of both tetQ and tetX has been associated with ele-
vated tetracycline and tigecycline resistance (71, 72). The chloramphenicol resistance
gene, cat, encoding a chloramphenicol acetyltransferase, has been detected as plas-
mid-borne in rare cases (72).

Efflux. Efflux systems in BFG bacteria, including resistance-nodulation-division
(RND) and multidrug and toxic compound extrusion (MATE) family efflux systems, con-
tribute to resistance to multiple antibiotic classes (73). Overexpression of RND efflux
systems encoded by the bmeABC operon and regulated by bmeR is induced by expo-
sure to b-lactams, carbapenems, metronidazole, and quinolones (74). The bexA gene,
encoding a MATE family efflux protein, has been implicated in resistance to fluoroqui-
nolones (75).
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AMR acquisition and activation. BFG bacteria have an incredibly “fluid” genome,
capable of acquiring, activating, and repressing phenotypic functions such as AMR
(Fig. 1C). The presence of ISs upstream of ARGs including cfiA, cepA, cfxA, nim, and erm
genes is strongly associated with high-level AMR (4, 76). Mobilizable transposons also
carry ARGs, and their mobilization can be stimulated by antibiotics, as is the case with
CTnDOT, which carries tetQ and ermF and is mobilized by tetracycline (77). More recently
discovered transposons include CTnHyb, which carries nim and tet genes as well as efflux
determinants (78). Phase variation, a well-studied phenomenon in BFG typically associ-
ated with altering surface polysaccharides, can also selectively activate or deactivate
ARGs following exposure to antibiotic stress by orienting invertible promoters upstream
of the ARG in the “on” position (79). Additionally, plasmids in BFG bacteria can carry
ARGs. A recent study identified 11 plasmids in six multidrug-resistant (MDR) BFSS isolates
that carried ARGs, including pBFS01_2 carrying an IS-activated nim gene. Most of the
plasmids were not yet identified as BFG associated (15). Furthermore, we have identified
a plasmid carrying an uncharacterized bla gene activated by an IS in a carbapenem-re-
sistant BFSS division I strain (4). Advances in the time and cost associated with long-read
sequencing technologies, which enable identification of complete plasmid sequences
and allow for uninterrupted assemblies that are confounded by repetitive IS elements in
short-read assemblies, will improve the identification and characterization of mobilizable
elements in BFG in the future.

SUMMARY AND FUTURE PERSPECTIVES

BFG are bona fide residents of healthy gut microbiomes worldwide (17), conferring a
variety of commensal effects on the human host, yet they are the most frequently recov-
ered isolates from anaerobic infections, confirming their role as a true pathobiont (1).
Despite the clinical significance of BFG bacteria, several avenues of improvement in our
understanding of BFG are warranted. The understanding of resistance mechanisms
against key frontline agents such as b-lactams and b-lactam inhibitor combinations is
lacking in comparison to other priority pathogens (4); however, we anticipate that this
understanding will be improved by the increasing availability of WGS data for BFG as well
as improved genome assembly and annotation methods. Susceptibility testing and spe-
cies-level identifications of BFG are not always routinely performed in clinical settings, yet
continual advancements are being made in technologies to rapidly predict phenotypic re-
sistance and species identity (4, 10, 48). Within the BFG, phenotypic resistance profiles as
well as specific resistance mechanisms have been shown to be species dependent across
multiple studies (4, 6). WGS-based analysis supports extensive taxonomic revisions within
the Bacteroidota phylum (7), improving the accuracy of BFG identifications and attributed
AMR predictions (4). Although colonization with ETBF is associated with CRC (18, 21) and
adaptive evolution of BFG members in healthy hosts has been investigated (16), the pos-
sibility of the gut microbiome as a reservoir for the myriad of infection types caused by
BFG bacteria would be a useful avenue to explore through strain tracking between iso-
lates and fecal metagenomes. With improved resolution of identification of members of
the BFG in clinical specimens, our understanding of species-specific disease associations
and antimicrobial resistance profiles will be further enhanced.
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