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ABSTRACT Proteus mirabilis is a Gram-negative bacterium recognized for its unique
swarming motility and urease activity. A previous proteomic report on four strains
hypothesized that, unlike other Gram-negative bacteria, P. mirabilis may not exhibit
significant intraspecies variation in gene content. However, there has not been a
comprehensive analysis of large numbers of P. mirabilis genomes from various sources to
support or refute this hypothesis. We performed comparative genomic analysis on 2,060
Proteus genomes. We sequenced the genomes of 893 isolates recovered from clinical
specimens from three large US academic medical centers, combined with 1,006 genomes
from NCBI Assembly and 161 genomes assembled from Illumina reads in the public
domain. We used average nucleotide identity (ANI) to delineate species and subspecies,
core genome phylogenetic analysis to identify clusters of highly related P. mirabilis
genomes, and pan-genome annotation to identify genes of interest not present in the
model P. mirabilis strain HI4320. Within our cohort, Proteus is composed of 10 named
species and 5 uncharacterized genomospecies. P. mirabilis can be subdivided into three
subspecies; subspecies 1 represented 96.7% (1,822/1,883) of all genomes. The P. mirabilis
pan-genome includes 15,399 genes outside of HI4320, and 34.3% (5,282/15,399) of these
genes have no putative assigned function. Subspecies 1 is composed of several highly
related clonal groups. Prophages and gene clusters encoding putatively extracellular-fac-
ing proteins are associated with clonal groups. Uncharacterized genes not present in
the model strain P. mirabilis HI4320 but with homology to known virulence-associated
operons can be identified within the pan-genome.

IMPORTANCE Gram-negative bacteria use a variety of extracellular facing factors to
interact with eukaryotic hosts. Due to intraspecies genetic variability, these factors may
not be present in the model strain for a given organism, potentially providing incom-
plete understanding of host-microbial interactions. In contrast to previous reports on P.
mirabilis, but similar to other Gram-negative bacteria, P. mirabilis has a mosaic genome
with a linkage between phylogenetic position and accessory genome content. P. mirabilis
encodes a variety of genes that may impact host-microbe dynamics beyond what is
represented in the model strain HI4320. The diverse, whole-genome characterized strain
bank from this work can be used in conjunction with reverse genetic and infection
models to better understand the impact of accessory genome content on bacterial
physiology and pathogenesis of infection.

KEYWORDS Proteus mirabilis, microbial genomics, population structure

M any bacterial taxa can be classified as opportunistic pathogens, organisms
that exhibit context-dependent degrees of commensalism or pathogenicity. The

mechanisms that shift an organism from a commensal to a pathogenic lifestyle are
likely multifactorial and rely on synergy of microbial and host features; however, such
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complexity is overlooked in conventional host-pathogen interaction models that use
single strains of bacteria (1). One issue with model strains is that they may
lack genetic factors present in currently circulating pathogens that may contribute to
phenotypic heterogeneity. Gram-negative bacteria use gene products that span the
outer membrane to differentially adhere to and invade eukaryotic host cells, including
type one secretion systems, type V secretion systems, and chaperone-usher pili (2–4).
These genes can be variably present across strains within bacterial species, as observed
for Klebsiella variicola, Klebsiella pneumoniae, and Escherichia coli (5–7). Acquisition of
specific genetic factors may result in clonal propagation and spread of successful
lineages (8, 9). Genomic characterization of the clonally epidemic K. pneumoniae ST15
lineage identified the Kpi chaperone-usher pilus operon, which was found to confer
gastrointestinal adherence and was absent from the well-characterized model strain,
K. pneumoniae ATCC10031 (8). Similarly, whole genome sequencing revealed that one
explanation for the global expansion of Salmonella enterica serovar Typhimurium clone
ST34 is acquisition of the sopE type III secretion system effector, enabling increased
microbial uptake (9). Accordingly, characterization of bacterial genomic population
structure and pan-genome content in Gram-negative opportunistic pathogens has
increased our understanding of how these bacteria interact with human hosts beyond
what model strains may show.

P. mirabilis is an Enterobacterales historically noted for its swarming motility and
urease activity (10). Substantial work characterizing the model strain P. mirabilis HI4320
has identified several factors at the host-microbe interface that contribute to uropa-
thogenesis, including mannose-resistant Proteus-like (MR/P) fimbriae, Proteus mirabilis
fimbriae (PMF), Proteus toxic agglutinin (pta), trimeric autoagglutin autotransporter of
Proteus (taaP), and adhesion and invasion autotransporter (aipA) (11–13). Despite being
a common cause of urinary tract infections (UTIs) and being associated with wound
and soft tissue infections, this organism has not been the subject of a large, focused
comparative genomic investigation (14, 15). A small study raised the hypothesis that P.
mirabilis differs from other Gram-negative bacteria in not having a mosaic pan-genome
(10). However, this conclusion was drawn from an analysis of only three newly sequenced
strains being compared against the P. mirabilis HI4320 reference genome (10). Evidence
that inclusion of more strains might identify further genetic diversity arose during an
investigation of P. mirabilis-enhanced Crohn’s disease (16). Hierarchical clustering of
average nucleotide identity (ANI) analysis of 33 sequenced P. mirabilis genomes from
that investigation and 24 genomes from NCBI databases found that 95% (54/57) of
genomes fell into two groups, 39% (21/54) in one and 61% (33/54) in the other, with their
clinical strains interspersed with NCBI genomes (16). Therefore, a gap in knowledge exists
regarding the extent of inter-strain diversity of P. mirabilis, specifically on the presence of
highly related lineages and variability of genetic factors that may interact with eukaryotic
host cells.

To address this gap in knowledge, we performed a multicenter analysis of 2,060
Proteus genomes. We provide the first description of P. mirabilis subspecies, clusters of
highly related lineages with similar accessory gene content, and the presence of many
uncharacterized genes that could alter P. mirabilis-host dynamics. This work highlights
the genetic diversity of P. mirabilis and shows that, in contrast to prior reports, the
intraspecies gene diversity of P. mirabilis is similar to other Enterobacterales members.
These findings also lay a foundation for future investigation on functional consequences
of P. mirabilis inter-strain genetic variability at the host-microbe interface.

MATERIALS AND METHODS

Isolate cohort

Clinical isolates of P. mirabilis were obtained from patient samples processed according
to standard clinical procedures for the specimen type at Washington University School
of Medicine (St. Louis, Missouri) for microbiologic culture (17). From September 2020
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to November 2021 we collected Proteus organisms (n = 427) that were identified and
reported out to the species level as part of the culture results during routine clinical
care (i.e., always reported from sterile body sites, such as blood cultures, when pure
or predominant in mixed cultures from non-sterile body sites, or above sample-specific
threshold for quantitative culture types, such as clean catch urine specimens) in the
electronic medical record (EMR) per routine clinical procedure. Non-sterile urine samples
were plated to tryptic soy agar with 5% sheep blood (Hardy Diagnostics, Santa Maria,
California, USA) and MacConkey agar (Hardy Diagnostics, Santa Maria, California, USA).
Sterile urine samples, tissue, wound, respiratory, and positive blood culture bottles were
plated to tryptic soy agar with 5% sheep blood, chocolate agar (Hardy Diagnostics,
Santa Maria, California, USA) and MacConkey agar. All samples were incubated at 35°C
in ambient air for aerobic culture. Additionally, we collected organisms (n = 213) in
a convenience sampling not identified and reported in the EMR per routine clinical
procedure (i.e., isolates that were grouped as part of “mixed microorganisms” in the
clinical culture report or were below clinical reporting thresholds) but were suspected
to be Proteus spp. due to the characteristic odor of the microbe or swarming motility
on culture medium. The recovered organisms were identified by MALDI-ToF MS (Bruker
Biotyper). Our cohort also included P. mirabilis isolates (n = 97) that were recovered
and reported from sterile body sites from 2017 to 2019 and frozen at −80°C. Finally,
our cohort included isolates from human stool (n = 3) and from skin swabs of healthy
individuals in Pakistan (n = 13) collected as part of separate investigations. All organisms
in the total cohort were subcultured onto tryptic soy agar with 5% sheep blood prior
to archiving to exclude mixed populations. Additional P. mirabilis isolates that grew from
blood, urine, or tissue/wound samples were obtained from NorthShore University Health
System (n = 75) and Weill Cornell Medicine (n = 61). Organisms were assigned a study
number, frozen in tryptic soy broth with 10% glycerol, and stored at −80°C.

Patient and laboratory metadata

Chi-squared test (P < 0.05 for the threshold of significance) was used to determine if
there was a statistical association between anatomic source and population structure.

Draft whole genome sequencing

The aforementioned freezer stocks were subcultured onto tryptic soy agar with 5%
sheep blood using inoculating loops. Cultures were incubated for 16–20 h at 35°C in
room air; ~10 colonies of non-swarming Proteus spp. or a sweep of the fourth quadrant
for swarming Proteus spp. was suspended in sterile, molecular grade water (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). Total genomic DNA was extracted using
the Bacteremia Kit (Qiagen, Germantown, Maryland, USA) according to the manufactur-
er’s instructions; 0.5ng of each DNA sample was used to create Illumina sequencing
libraries with a modification of the Nextera XT protocol (18). Examples of all computa-
tional commands for this study are included (Document S1). Samples were pooled and
sequenced on an Illumina NovaSeq platform by the Genome Technology Access Center
at McDonnell Genome Institute (https://gtac.wustl.edu/). Raw reads were demultiplexed
by barcode and had adapters removed using trimmomatic v.38 (19). Processed reads
were assembled into draft genomes with unicycler v1.0 (20). Assembly quality was
assessed with QUAST v4.5 (21). Genomes were included in this study if “# contigs (>=
0 bp)” metric from QUAST was below 500 contigs (Table S2). All assemblies that passed
quality filtering had genes annotated with prokka v1.14 (22).

Analysis of publicly available genomes

We acquired publicly available Proteus genomes from GenBank in June 2022 (n = 1,006).
Fasta files for “Proteus” genomes were obtained from NCBI Assembly using the GenBank
nomenclature in June 2022. Reads for “Proteus” that were “paired” library layout, from
“DNA” source, “Genome” strategy, and “fastq” File Type were downloaded from NCBI SRA
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in June 2022. Downloaded SRA reads (n = 107) were processed using trimmomatic and
unicycler exactly as described above. Assembled SRA scaffolds and fasta files directly
from NCBI Assembly had their quality assessed with QUAST and genes annotated with
prokka as described above. Information on genomes used is available in Table S1.

ANI analysis

All assembly files (n = 2,060) that passed quality filtering were used as input for an
all-by-all comparison with FastANI (23). The resulting pairwise comparison file ANI values
were filtered to remove pairwise comparisons that yielded an ANI below the accepted
species cutoff of 95%. The resulting source-target-edge file was input into Cytoscape
for visualization (23). Node shapes were altered to correspond with the genome source.
Species assessment for the Cytoscape reciprocal groups used the type assembly for all
valid Proteus spp. The subset consisting of the ANI-confirmed P. mirabilis (n = 1,883) was
visualized as a heatmap in RStudio with a gradient centered at 98% (24). This cutoff was
previously used for subspecies delineation of Salmonella, Mycobacterium abscessus, and
Leuconostoc lactis (25–27). Subspecies classification was defined by Cytoscape reciprocal
groups composed of genomes with ANI > 98% to other genomes within the group but
98% < ANI > 95% between groups.

Core genome alignment

All ANI-confirmed P. mirabilis genomes (n = 1,883) had prokka-identified genes clustered
using panaroo v1.0 using a core threshold value of 99% under moderate mode (28) . The
core genome alignment file was processed using SNP-sites to keep only polymorphic
positions (29). The filtered core genome alignment was converted into a newick tree
using FastTree v2.1.9 with the gamma flag activated (30). The resulting newick file was
visualized as an unrooted phylogenetic tree using the iTOL website (31).

We next used RAxML to identify duplicate isolates from the core genome alignment
of all 1,883 subspecies 1 genomes. Duplicates could arise from the use of publicly
available data (i.e., authors upload genome and Illumina reads, or authors upload
multiple genomes for the same isolate) or our own analysis (if a patient presents with
P. mirabilis infection at different time points) and may bias our results by artificially
inflating the size of clonal clusters. The subset of P. mirabilis subspecies 1 genomes (n
= 1,748) after removal of duplicates was processed using panaroo, SNP-sites, FastTree,
and iTOL in the same manner. iTOL was used to overlay metadata with the color
strip function and gene presence/absence data as a binary function. We used SNP
counting method snp-dists (v0.8.2) (https://github.com/tseemann/snp-dists) to count
every pairwise SNP site. The output was converted into source-target-edge (genome
A-genome B-SNP Count) file and filtered to remove edges < 4,013 SNPs. We wanted to
enact an SNP cutoff value stringent enough to define clusters consisting only of highly
related genomes, excluding possible singleton genomes, but larger than traditional
cutoffs used for defining local outbreaks. We chose 4,013 SNPs as it represents 0.1% of
the median genome length of P. mirabilis genomes on NCBI Genomes (Accessed July
2022). We used FastBAPS as an additional method for clustering genomes and compared
concordance between SNP clusters and BAPS grouping (32). Results depicting each of
the two methods for P. mirabilis subspecies 1 genome are included (Table S3).

Pan-genome analysis

The pan_genome_reference fasta file from panaroo analysis of P. mirabilis subspecies
1 genomes was uploaded to EggNOG-mapper and annotated with the EggNog five
database (33). The binary accessory gene-presence absence matrix from panaroo
had singleton (found in one genome) and core genes (found in >1,731 genomes)
removed. The resulting matrix was visualized using Rtsne (https://cran.r-project.org/web/
packages/Rtsne/) as a T-Distributed Stochastic Neighbor Embedding (t-SNE) plot. The
parameters used two dimensions, 40 perplexity, max iteration of 5,000, and had
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check_duplicates turned off. Samples were colored if they came from one of the top 10
clusters as determined by SNP counting. Scoary was used to identify genes significantly
enriched within the three largest clusters by using the corresponding annotated-gene
presence-absence matrix from panaroo and a traits file where genome presence in any
of the three largest clusters was denoted with a one and absence with a zero (34). The
results were filtered to include only genes with sensitivity and specificity >80%. Genes
visualized that were found spatially localized adjunct to one another are described
(Table S4). We used a modification of roary_plots (https://github.com/sanger-patho-
gens/Roary/blob/master/contrib/roary_plots/roary_plots.ipynb) to visualize the newick
tree for subspecies 1 genomes with the presence/absence matrix from panaroo. Selected
genes described in Fig. 6 were chosen for display from annotation by panaroo and
putative localization as extracellular facing factors. NCBI annotations for the specific
genes of interest described in Fig. 6 are included (Table S5).

RESULTS

Proteus cohort is composed of 10 named species and 5 genomospecies

We initially performed ANI analysis on the 2,060 genomes and clustered pairwise ANI
values >95% into nodes using Cytoscape (Fig. S1). We found that the 2,060 genomes
fell into 15 nodes, with no ANI values >95% existing between nodes, indicating robust
species delineation within the Proteus genus. Analysis of type genomes within the
respective nodes revealed that P. mirabilis was the largest node, representing 91% (n
= 1,883) of the cohort, followed by Proteus terrae at 2.5% (n = 51), Proteus penneri
at 1.7% (n = 36), Proteus vulgaris 1.5% (n = 30), and Proteus columbae at 1.3% (n =
27). One-third (5/15) of the nodes did not have a type strain within them, indicating
they represent novel Proteus genomospecies. All novel genomospecies came from the
publicly deposited genomes. A midpoint-rooted phylogenetic tree of the 1,101 Proteus
core genes from type genomes for named species and representative genomes for the
novel genomospecies showed that P. mirabilis is most closely related to the singleton
Proteus myxofaciens, both forming a monophyletic group with Proteus hauseri (Fig. 1).

P. mirabilis comprises one major subspecies and two minor subspecies

We next visualized the same ANI analysis to examine the 1,883 P. mirabilis genomes
as a heatmap color gradient centered at 98% ANI (Fig. 2A), a cutoff used previously
for subspecies delineation in Salmonella (27). Hierarchical clustering of the pairwise ANI
values revealed three groups share >98% ANI within each group but <98% ANI between
groups, indicating that P. mirabilis is composed of three subspecies (Fig. 2A). The largest
of these, which we term subspecies 1, contained 96.7% (n = 1,822) of the genomes,
2.54% (n = 48) were in subspecies 2, and 0.7% (n = 13) were in subspecies 3. As an
orthogonal method to confirm the distinct relationship among the putative P. mirabilis
subspecies, we constructed an approximate maximum likelihood phylogenetic tree from
the alignment of the 2,089 core genes found in >99% of the P. mirabilis genomes and
found that all subspecies 2 and 3 genomes from the ANI analysis formed monophyletic
clades within each subspecies (Fig. 2B). The short branch distance (0.021 for subspecies 2
and 0.088 subspecies 3) to their connecting node and position indicated that subspecies
2 and 3 are more closely related to each other than to subspecies 1. Given that these
represented only 3.2% (61/1,883) of the P. mirabilis cohort, the remainder of our analysis
focused on subspecies 1 genomes.

A wealth of undescribed genes exist in the P. mirabilis pan-genome

We performed panaroo pan-genome analysis on the reduced cohort of 1,748 P. mirabilis
subspecies 1 genomes to gain insight into gene content and relatedness. This anal-
ysis resulted in a total pan-genome size of 19,069 genes. Of these, 2,082 (10.9%)
were considered core genes (>99% prevalence), 2,059 (10.8%) were considered shell
genes (15–99% prevalence), and 14,928 (78.3%) were considered cloud genes (<15%
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prevalence) (Fig. S2) (35). The pan-genome reference file containing single representa-
tives of all 19,069 genes was uploaded to the EggNOG-mapper annotation website,
yielding an annotation for 13,633 genes (71.4%). Clusters of orthologous groups (COGs; n
= 12,305) were assigned to a smaller subset of 11,495 (60.2%) genes in the pan-genome
(Fig. 3A).

Since the early 1990s, most of the knowledge of P. mirabilis biology and pathogen-
esis, particularly in the urinary tract, has come from studies using P. mirabilis strain
HI4320 (11, 36). We found that 3,670 ORFs were detected by prokka in the P. mira-
bilis HI4320 complete genome (Fig. 3A). EggNOG-mapper assigned an annotation to
3,516 (95.8%) of these, while assigning an annotation to only 10,117 (65.7%) of 15,399
genes not present in P. mirabilis HI4320 (P < 0.0001; Fig. 3A). We then analyzed the
conservation of each gene compared with the P. mirabilis HI4320 chromosome to
identify regions that were present in the accessory genome (Fig. 3B). We found five
regions previously posited to be part of the accessory genome due to GC-skewing
during the initial whole-genome sequencing of P. mirabilis HI4320 did have variable
presence within the P. mirabilis pan-genome (37). The least conserved of these was
a 70-gene conjugative transposon present in 17% of all P. mirabilis strains. We also
identified a 24-gene prophage (PMI1906-1930) that was not initially described in the
first complete genome of P. mirabilis HI4320 (37). Also included in the core genome are
the characterized urovirulence factors pta, taap, and aipA, and the chaperone-usher pili
PMF and MR/P. We next applied pfam annotations to the 15,399 genes present in the
P. mirabilis pan-genome outside of HI4320. Interestingly, the three most highly represen-
ted pfam categories among non-HI4320 genes all had motifs involved in DNA interac-
tions (HNH_3, phage_integrase, and rve); moreover, five additional annotations involved
in DNA interactions (HTH_Tnp_1, ResIII, Helicase_C, HTH_21, and Arm-DNA-bind_3)
were represented within the top 20 pfam categories. Meanwhile, non-HI4320 genes
involved with putative extracellular-facing interactions comprised seven of the top 20
pfam categories, specifically including glycosylation (Glycos_transf_1, Glycos_transf_2,
and Glycos_transf_4), transport (ABC_tran, MFS_1), and adhesion/virulence (fimbrial,
PAAR_motif ) (Fig. 3C).

P. mirabilis accessory genome composition is associated with phylogenetic
position

We created an approximate maximum-likelihood SNP core genome phylogenetic tree of
the 1,748 P. mirabilis subspecies 1 genomes to visualize the population structure of our

Genomospecies 5

Proteus cibi FJ2001126-3

Proteus alimentorum 08MAS0041

Proteus columbae 08MAS2615

Proteus penneri ATCC 33519

Proteus faecis TJ1636

Proteus terrae LMG 28659

Genomospecies 1

Proteus genomosp. 4 str. ATCC 51469

Genomospecies 2

Proteus vulgaris NCTC 13145

Genomospecies 3

Proteus myxofaciens ATCC 19692

Proteus mirabilis NCTC 11938

Proteus hauseri ATCC 700826

.1 nucleo!de subs!tu!on per site

FIG 1 P. mirabilis is most closely related to P. myxofaciens and P. hauseri. Core genome phylogenetic tree of type strain genomes for named taxonomic species

and representative genomes for uncharacterized genomospecies.
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cohort (Fig. 4A). When observed unrooted, the phylogenetic tree assumes a “star-comet”
configuration, conveying that this large cohort contains both clusters of highly related
genomes and substantial differences between lineages. To identify highly related clonal
lineages, we quantified SNP differences between all possible pairwise genome compari-
sons from the SNP core genome alignment used to generate the phylogenetic tree. The
mean SNP count was 14,375 with a standard deviation of 5,452 (Fig. S3A). The maximum
SNP distance observed was 122,441 SNPs, and the lowest was 0. We chose a cutoff of
4,013 SNPs (equivalent to 0.1% of the median P. mirabilis genome length in NCBI) to
specify clusters of highly related genomes. We found that the largest cluster comprised
173 genomes, while the next two largest clusters each contained 99 genomes. In total,
75 clusters of > four genomes as well as 24 triplets, 48 pairs, and 196 singletons make up
the cohort. The largest 16 clusters together comprise 50.9% (891/1,748) of the genomes
(Fig. S3B). We compared our cluster delineation to FastBAPS group annotation as an
orthogonal method to identify highly related genomes. We found that FastBAPS binned
all 1,748 genomes into 31 groups, with high concordance between the two methods
for the large SNP clusters (Fig. S4; Table S3). Our top 10 largest SNP clusters (n = 720
genomes) corresponded almost exactly with 10 BAPS groups (n = 730 genomes).

We layered relevant metadata for cluster assignment, anatomic source, and genome
source onto the SNP core genome phylogenetic tree (Fig. 4A). In the outermost ring,
we marked genomes making up the 10 largest clusters. Of note, the cluster assignment
fit with the topography of our phylogenetic tree, as cluster assignments aligned with
portions of the tree featuring short branch length between genomes. The top 10 largest

96 97 98 99

ANI (%)

100

Subspecies 1
Subspecies 2

Subspecies 3

A B .1 nucleo!de subs!tu!on per site

n=13

n=48
n=1,822

Subspecies 1

Subspecies 2

Subspecies 3

FIG 2 P. mirabilis is composed of three subspecies. (A) Heat map with hierarchical clustering of 1,883 pairwise ANI values. Dendrogram is colored by subspecies

assignment—reciprocal groupings of ≥98% within the group and ≤98% between groups. (B) SNP core genome phylogenetic tree with subspecies designation as

colored branches.
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clusters were spread across the phylogenetic tree with Clusters one, six, and three
composing one branch (purple) and Clusters four, five, nine, and seven constituting
another branch (teal, Fig. 4A). We found P. mirabilis HI4320 was not within the top 10
largest clusters but did have four other genomes related to it below our 4,013 SNP cutoff.
We did not find any statistically significant associations between the anatomic sources
and isolate cluster, indicating that clusters of highly related P. mirabilis genomes were
capable of surviving in an array of distinct human host niches. Similarly, there were no
large clades associated with the geographic (our study) or electronic (NCBI Assembly
or SRA) source of the genomes. A relative exception was Cluster one, in which 84.9%
(147/173) of the genomes were from NCBI Assembly but only 7.5% (13/173) were from
our newly sequenced isolates. These data indicate our cohort is representative of P.
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mirabilis genomic diversity at-large. Using t-SNE analysis on a reduced presence/absence
matrix representing all non-core, non-singleton genes, we found the different clusters
occupied distinct spaces within the plot, indicating the correlation between phyloge-
netic position and accessory gene content (Fig. 4B). In addition, we overlaid the newick
tree for subspecies 1 genomes (distance not to scale) adjacent to the presence/absence
matrix, with genes ordered from most to least conserved (Fig. S5). We can observe that
genomes within the top 10 largest SNP clusters have similar gene presence/absence
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profiles to other genomes within the cluster but are distinct in comparison to the nearest
neighboring genomes outside of the cluster (Fig. S5).

Lineage-specific genes include prophages, secretion systems, and O-antigen
modification

To identify genes enriched in each of the three largest clusters of subspecies 1, we
performed a pan-genome-wide association study (PGWAS) using scoary. We filtered
results to include only genes with >80% sensitivity and specificity. Due to our inter-
est in groups of spatially co-localized genes (candidate operons), we used complete
genomes to assign genomic position (Table S3; Document S2). Distinct co-localized
genes annotated by Egg-NOG mapper as phage related were significantly associated
(bonferroni adjusted P < 0.001) with Clusters one, two, and three (Fig. 5A through C). For
example, distinct prophages in Cluster one encode enzymes necessary for the synthesis
of queuosine (a modified nucleoside in tRNA) as well as flu, encoding antigen 43, a type
Va secretion system important for autoaggregation in Escherichia coli (38) (Fig. 5A). Genes
with pfam annotations for PAAR_motif and RHS_repeat, typically associated with type six
secretion system proteins, were found in Cluster one and Cluster three (Fig. 5A and C).
We also found a group of genes associated with Clusters two and three that are likely
involved in O-antigen modification (Fig. 5B and C). The putative O-antigen modification
region in Clusters two and three both contain a glycosyltransferase family 4 protein
(NCBI Reference Sequence: WP_004249908.1) and a UDP glucuronic acid epimerase
(NCBI Reference Sequence: WP_263055654.1) but an additional eight genes are specific
to Cluster two and five genes to Cluster three.

Uncharacterized P. mirabilis candidate genes acting at the host-microbe
interface

We used a homology-based approach to identify gene clusters in P. mirabilis subspecies
1 that have been described in other Gram-negative bacteria but are not harbored in
P. mirabilis HI4320 (Fig. 6). We quantified the distribution of a putative type IV pilus,
a chaperone-usher pilus system significantly associated with Cluster three (Fig. 5C), an
uncharacterized type one secretion system (T1SS), the type Va autotransporter antigen
43, and a recently reported but uncharacterized type X secretion system (TXSS) (39). The
type IV pilus [found in 10 (0.6%) genomes], the T1SS [found in 1.6% 28 (1.6%) genomes],
and the TXSS [found in 41 (2.3%) genomes] were not associated with the large clusters
but present only in the aforementioned deep branching lineages between Clusters
eight and ten. Antigen 43 was present in 63.6% (110/173) of Cluster one genomes
and 76.7% (46/60) of Cluster six genomes. Unlike the other genes highlighted in this
section, antigen 43 was also sporadically distributed in smaller numbers throughout the
phylogenetic tree.

DISCUSSION

To the best of our knowledge, this is the largest cohort of Proteus genomes analyzed. We
initially found that P. mirabilis, P. myxofaciens, and P. hauseri represent lineages separate
from the remainder of Proteus species and genomospecies. This informed understand-
ing of Proteus phylogeny is helpful for investigating the relationship between impor-
tant phenotypic features that are routinely used by clinical microbiology laboratories
for identification of the members of this genus, specifically the association of indole
production with an inducible chromosomal Class C beta-lactamase (40). This feature is
absent in P. penneri and P. mirabilis but present in other species such as P. vulgaris (40).
ANI analysis revealed the presence of three different P. mirabilis subspecies using the
proposed 98% ANI cutoff from Salmonella subspecies (27). Further phenotypic charac-
terization of representative isolates from the three P. mirabilis subspecies is necessary
to create named subspecies designations. In Salmonella, the breakdown into subspe-
cies categories was predictive of chaperone-usher pilus repertoire (41). Mycobacterium
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abscessus has been historically well characterized into M. abscessus subspecies bolletii,
M. abscessus subspecies abscessus, and M. abscessus subspecies massiliense. Analysis of
1,505 M. abscessus genomes found that 63% were M. abscessus subsp. abscessus, 30%
were M. abscessus subsp. massiliense, and 7% were M. abscessus subsp. bolletii (25). In
contrast, our tripartite subspecies breakdown of P. mirabilis was more skewed in its
distribution, with nearly 97% of the genomes in subspecies 1, 2.5% in subspecies 2, and
0.7% in subspecies 3. This may reflect sampling bias in our human-associated isolates.

The use of whole-genome sequencing bacterial cohorts to investigate niche
specificity and infectious capabilities is an active area of research, with often species
specific observation. For our cohort, within subspecies 1 genomes, we identified highly
related clusters of <4,013 SNPs and found that accessory genome content was rela-
ted to cluster designation. This result is analogous to observations made in E. coli
and Enterococcus faecalis showing the linkage between phylogenetic signal and the
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accessory genome (42, 43). We found that P. mirabilis subspecies 1 strains isolated from
the same body site can come from a variety of clusters, similar to observation from a
cohort of 568 avian pathogenic E. coli strains multiple clades can cause colonization or
invasive disease (44). In addition, the authors did not identify differential plasmid burden
among colonizing and disease-causing strains (44). Analysis of 490 Camplyobacter jejuni
genomes, from human, animal, and environmental sources did find 49 accessory genes
associated with pig colonization (45). C. jejuni is a strictly gastrointestinal pathogen in
contrast to the generalist nature we found for P. mirabilis, suggesting that different
selective pressure may be exerted on bacteria based on their ability to colonize multiple
sites within an organism (45).

In our investigation, we highlighted just a few examples of such genes using
PGWAS, association- and homology-based approaches. We provided the first description
of antigen 43 in P. mirabilis, an autotransporter which in E. coli confers aggregation,
promotes biofilm formation, and possibly prolongs cystitis (38, 46). Within E. coli, antigen
43 can be subdivided into four variants, but all of the P. mirabilis alleles in the present
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FIG 6 Identification and distribution of uncharacterized P. mirabilis genes. Dendrogram of the SNP core genome phylogenetic tree with cluster position shown

as an inner ring. Presence of genes is denoted by filled squares.
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study were C4 (38). While a previously characterized type Va secretion system with
protease activity (pta) has a demonstrated role in bladder colonization, antigen 43 is
a self-associated autotransporter with mechanistically distinct biological activity (47).
PGWAS also identified a chaperone-usher pilus associated with Cluster three; such
systems are abundant in other Gram-negative bacteria and in E. coli mediate binding
to various glycoprotein targets on uroepithelial cells (48). In K. variicola and Salmonella,
chaperone-usher pili were similarly associated with phylogenetic position rather than
environmental source (41, 49). P. mirabilis HI4320 has 17 chaperone-usher pilus systems,
with 5/17 having a demonstrated biological role (50). The existence of cluster associated
accessory chaperone-usher pilus could confer increased adherence of P. mirabilis isolates
in specific environmental niches. In K. pneumoniae, the Kpi chaperone-usher pilus
was associated with presence in the ST-15 conferred increased adherence to alveolar,
bladder, and colorectal cell lines (8). We also found that genes putatively associated
with O-antigen synthesis were significantly enriched within Cluster two and Cluster
three genomes. This is consistent with previous genetic characterization of 80 Proteus
genomes using PCR which found 60 distinct O-antigen serotypes. In Pseudomonas
aeruginosa, a Gram-negative pathogen also capable of causing disease in a variety of
infectious contexts, genetic modifications within isogenic strains that caused modifica-
tion to O-antigen were associated with decreased inflammation during chronic infection
(51). Further work can precisely understand the relationship between complete LPS
structure and O-antigen gene presence as well as the impact the different LPS structures
may have on host interactions. Using a homology-based approach we scoured the
pan-genome for other genes whose products may act at the host-microbe interface.
We found the recently described TXSS, which encodes a tripartite toxin uncharacterized
in P. mirabilis, was rare and not cluster associated (39). Similar to our description in P.
mirabilis, Yersinia enterocolitca strain W22703 encodes a TXSS and deletion of different
components attenuates virulence in a systemic Galleria mellonella (Greater wax moth)
infection model (52). The operon surrounding the cytotoxin gene tcsL in Paeniclostridium
sordellii also encodes components similar to the TXSS, suggesting that this might be
a conserved export mechanism for toxins. Further work using reverse genetics can
characterize the role of this secretion system in P. mirabilis. The T1SS we identified carries
an effector with multiple bacterial immunoglobulin domains, which are typically found
in adhesins (53). Further work using reverse genetic approaches previously developed
for P. mirabilis will expand on our genomic findings to better understand how specific
accessory genes may impact bacterial physiology and pathogenicity.

In conclusion, we performed whole-genome based analysis on the largest cohort of
Proteus spp. to date. A limitation of our study is the lack of isolates from healthy people
(which may represent true commensalism) or from animal or environmental samples.
Additionally, since we used Illumina whole-genome sequencing methodology, we were
not able to confidently separate complete chromosomes from plasmids. We highlighted
inter-species diversity of the genus as well as intraspecies diversity within P. mirabilis. We
found that subspecies 1 can be further divided into highly related clusters with linkage
between clusters and accessory genome composition. Notable accessory genes include
lineage associated prophage regions, chaperone-usher pili, a type V secretion system as
well as a lineage independent novel T1SS, and an uncharacterized TXSS. This repertoire
of accessory genome components may lead to strain specific mechanisms of interac-
tions at the host-microbe interface during colonization and pathogenesis. Phenogenom-
ics—the combined use of profiling phenotypic variation with genomic annotation has
identified a novel secretion mechanism in M. abscessus and Verrucosispora sp. adaption
to laboratory growth conditions (54, 55). The whole-genome sequenced clinical isolate
library from this study is a necessary initial step using phenogenomics to reveal how SNP
variation in core genes or accessory gene presence/absence influences strain behavior
across a variety of model systems. These results argue strongly that the nearly exclusive
use of a single model strain impedes our ability to understand how other genetic factors
may influence infection dynamics.
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