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Impact of international travel and diarrhea
on gut microbiome and resistome dynamics

Manish Boolchandani 1,2, Kevin S. Blake 1,2, Drake H. Tilley3,
Miguel M. Cabada4,5, Drew J. Schwartz 1,6,7,8,9, Sanket Patel1,2,
Maria Luisa Morales5, Rina Meza3, Giselle Soto3, Sandra D. Isidean10,11,
Chad K. Porter10, Mark P. Simons3,10 & Gautam Dantas 1,2,7,12

International travel contributes to the global spread of antimicrobial resis-
tance. Travelers’ diarrhea exacerbates the risk of acquiringmultidrug-resistant
organisms and can lead to persistent gastrointestinal disturbance post-travel.
However, little is known about the impact of diarrhea on travelers’ gut
microbiomes, and the dynamics of these changes throughout travel. Here, we
assembled a cohort of 159 international students visiting the Andean city of
Cusco, Peru and applied next-generation sequencing techniques to 718
longitudinally-collected stool samples. We find that gut microbiome compo-
sition changed significantly throughout travel, but taxonomic diversity
remained stable. However, diarrhea disrupted this stability and resulted in an
increased abundance of antimicrobial resistance genes that can remain high
for weeks. We also identified taxa differentially abundant between diarrheal
and non-diarrheal samples, which were used to develop a classification model
that distinguishes between these disease states. Additionally, we sequenced
the genomes of 212 diarrheagenic Escherichia coli isolates and found those
from travelers who experienced diarrhea encoded more antimicrobial resis-
tance genes than those who did not. In this work, we find the gutmicrobiomes
of international travelers’ are resilient to dysbiosis; however, they are also
susceptible to colonization by multidrug-resistant bacteria, a risk that is more
pronounced in travelers with diarrhea.

The gut microbiota plays a critical role in deterring colonization by
exogenous microorganisms1. International travel to destinations with
high-infectious disease burdens can alter the gutmicrobiome and lead
to the acquisition of multidrug-resistant organisms (MDRO)2, which

may then spread locally when the traveler returns home3,4. Travelers’
diarrhea affects 10–70% of travelers from low infectious disease-risk
countries visiting middle- and high-risk destinations5–8. Diarrhea can
disrupt travel plans, lead to long-term chronic health consequences
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such as post-infectious irritable bowel syndrome, and can increase risk
for MDRO colonization6,9. As travelers’ diarrhea is predominately
caused by bacterial etiologies6, antimicrobials are routinely used for
treatment and prophylaxis10; however, such use compounds the risk
for MDRO colonization. For example, Arcilla et al. reported 34% of
Dutch travelers acquired extended-spectrum beta-lactamase (ESBL)-
producing Enterobacteriaceae during travel with carriage lasting up to
12 months post-travel and observed transmission to non-traveling
household members4. Importantly, those who developed diarrhea or
took antibiotics during their stay abroad were more likely to acquire
these ESBL-producing Enterobacteriaceae4.

Previous studies on the impact of international travel on gut
microbiome changes and MDRO acquisition have been largely
limited to the collection of pre- and post-travel stool samples or
have focused on select cultivable antimicrobial-resistant (AMR)
organisms2–4,11–14. Thus, there is limited understanding about how
the taxonomic and functional architecture of the gut microbiome
changes during travel, how these are affected by diarrheal epi-
sodes, and how those dynamics influence MDRO acquisition and
antimicrobial resistance gene (ARG) carriage. For example, fol-
lowing acute perturbation by infectious diarrhea, the gut micro-
biomes of non-traveling populations return to a healthy pre-
diarrheal state within 1 month15; however, the gut microbiomes of
international travelers are subject to additional chronic pertur-
bations (e.g., different microbial ecology, dietary changes) which
may shift the microbiome over time towards a more local state16.
We hypothesize these chronic perturbations prevent the micro-
biome of international travelers from returning to a pre-diarrheal
state, and that diarrhea markedly increases the rate of divergence
from baseline. These dynamics can only be assessed with long-
itudinal studies which sample travelers’ microbiome throughout
the length of stay. In addition, while we know that international
travel results in acquisition of select pathogenic MDROs3, it is less
clear how travel affects the overall carriage of ARGs in the
broader microbiome. We hypothesize that length of stay in mid-
dle- and high-risk destinations are directly related to the pre-
valence of ARGs harbored by the gut microbiota, and—as with
microbiome divergence—diarrhea accelerates this rate of
increase. Analyzing the entire microbiome and resistome enables
a comprehensive evaluation and stratification of travel risks, such
as duration in-country, microbiome features, total ARG content,
and occurrence of diarrhea. In this work, we address these
questions by applying whole metagenome and whole genome
sequencing to an extensive collection of longitudinally collected
fecal samples and cultured bacteria from travelers from multiple
countries visiting a common international destination. We show
that the gut microbiomes of international travelers’ are resilient
to dysbiosis; however, they are susceptible to colonization by
multidrug-resistant bacteria, a risk that is more pronounced in
travelers with diarrhea.

Results
Overview of international travelers cohort
We assembled a prospective cohort of 159 international students (60%
female, 40% male; median age: 24 years; age range: 18–65 years)
attending the Amauta Spanish language school in the city of Cusco,
Peru between June 2012 and July 2016. Participants originated from 16
low infectious disease-risk countries, and their median duration of
participation was 35 days (interquartile range (IQR): 33 days; range:
2–173 days) (Fig. 1a). Stool samples were collected upon enrollment
within 48 h of their arrival to Cusco and weekly thereafter, with addi-
tional samples collected during diarrheal events. The 113 individuals
who experienced at least one episode of diarrhea during their stay
(defined as one or more semi-liquid or watery bowel movements
associated with the presence of gastrointestinal symptoms, see

Methods) were retrospectively classified into the “Travelers who
experienced Diarrhea” (TD) group, while the 46 individuals who did
not experience diarrhea were classified into the “Healthy Travelers”
(HT) group (Fig. 1b). In total, we collected 718 stool samples, com-
prised of 144 diarrheal and 574 non-diarrheal sample types (HT n = 212,
TD n = 362), with amedian of four samples per individual (range: 1–22;
Supplementary Fig. 1a–d). Additionally, we sub-divided TD subjects’
samples into: non-diarrheal samples collected before the subject
experienced diarrhea (PreTD), diarrheal samples (TD), and non-
diarrheal samples taken after the subject experienced diarrhea
(PostTD). All HT samples are non-diarrheal. Most individuals in the TD
group experienced their first diarrheal episode within 1 month of
arrival (78/113, 69%). Detailed demographic, medical history, and
dietary data were collected from each participant (see Methods), and
cohort characteristics with a summary of metadata features are listed
in Supplementary Table 1. We observed no significant differences
between HT and TD subjects with respect to age, sex, trip duration, or
other demographic factors in univariable logistic regression analyses
(Supplementary Tables 1 and 2; Supplementary Fig. 1b, c).

To characterize the gut microbial communities of travelers, we
performed whole metagenome shotgun sequencing on the 718 stool
samples and generated taxonomic composition (using MetaPhlAn217),
and antibiotic resistome (using ShortBRED18) profiles (Fig. 1b, Supple-
mentary Fig. 2a, b). These profiles were supplemented with multiplex
PCR on 696 stool samples and cultures to identify common diarrhea-
genic pathogens; whole genome sequencing of 212 diarrheagenic
Escherichia coli (DEC) isolates to evaluate phylogenetic diversity and
ARG content (Fig. 1c, Supplementary Fig. 2c, d); antibiotic suscept-
ibility testing on 169 DEC isolates to determine phenotypic resistance
(Fig. 1d, Supplementary Fig. 2e); and the construction of 21 functional
metagenomic libraries19–23 from 210 stool samples to characterize the
antibiotic resistome in a sequence- and culture-unbiased manner
(Supplementary Fig. 2f).

Among all the metadata variables, inter-individual variation
accounted for the largest variation (44–52%) in taxonomic and resis-
tome profiles (Supplementary Table 3, see Methods). For the other
metadata variables, we observed relatively small (up to 4%) but sig-
nificant variation associated with stool grade, sample type, country of
residence, and duration of stay after correcting for multiple-
hypothesis testing (all FDR P <0.05; full results in Supplementary
Table 3). Pathogen presence (identified by multiplex PCR) and subject
age were also significantly associated with taxonomic but not with
resistome profiles, while sample collection time was significantly
associated with resistome but not with taxonomic profiles (Fig. 1e,
Supplementary Table 3). Therefore, we conclude that these significant
features (stool grade, sample type, country of residence, duration of
stay, pathogen presence, age, and sample collection time) have sys-
tematic effects on the microbial community.

Impact of international travel and diarrhea on the gut
microbiota
Our longitudinally-collected metagenomic samples enabled us to
evaluate the short- and long-term changes to travelers’ gut micro-
biomes. Overall, the taxonomic diversity of the travelers’ gut micro-
biota was temporally stable throughout the duration of their stay. As
determined by linear mixed effect models (LMM; subject as random
effect), the Shannon diversity of all HT and TD subjects’ sample types
were stable over time and did not significantly differ from each other
(Fig. 2a, LMM, P > 0.05, Supplementary Table 4a); however, the rich-
ness of PostTD non-diarrheal samples was significantly lower com-
pared to HT samples over time (LMM, P <0.001, Supplementary
Table 4a). In addition, when we compared TD individuals’ diarrheal
samples (TD) with matched non-diarrheal samples collected within
2 weeks before (PreTD) and after diarrhea (PostTD), we observed a
significant decrease in both richness (GLMM, P <0.001) and Shannon
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diversity (Fig. 2b, LMM, P < 0.05) following diarrhea (Supplementary
Table 4b).

While taxonomic diversity remained relatively constant, all parti-
cipants’ gut microbial communities underwent significant restructur-
ing throughout the course of their travel abroad. First, we compared
the beta-diversity of participants’ consecutive stool samples.We found

that individuals in the TD group had greater apparent variation and
less stable microbial architecture throughout the length of their stay
than those in the HT group (Fig. 2c, LMM P < 0.001, Supplementary
Table 5a). Importantly, we observed that individuals with greater
taxonomic diversity at baseline were significantly more resilient to
change than individualswith lower baselinediversity (LMM, P (baseline
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Shannon index) <0.001; Supplementary Table 5a). This is in-line with
previous reports indicating that microbial diversity is an important
contributor to overall intra-subjectmicrobial stability and colonization
resistance to enteric pathogens, with a lower pre-travel diversity being
significantly associated with increased susceptibility to infection24.
Next, to quantify divergence from the baseline gut microbial compo-
sition we compared the beta-diversity, measured by Bray–Curtis dis-
similarity and the Jaccard index, of each travelers’ samples to theirfirst-
week baseline sample. We found that the taxonomic composition of
participants in both the HT and TD groups changed significantly over
the length of stay (Fig. 2d, LMM, P(Time_diff_days) <0.001, Supple-
mentaryTable 5b), likely as a consequenceof travelers’ exposure to the
different environmental microbial milieu of Peru compared to their
home country. Notably, principal coordinate analysis (PCoA) of
Bray–Curtis dissimilarity between TD samples which were temporally
matched with before, during, and after diarrhea showed marked het-
erogeneity, suggesting that inter-individual variability among the
samples exceeds the effect of diarrhea-induced changes (Supple-
mentary Fig. 3a). Nevertheless, we observed a weak association
between samples based on whether they were collected before, dur-
ing, or after diarrhea (Supplementary Fig. 3a, PERMANOVA,
P =0.009, R2 = 0.10).

To evaluate large-scale perturbations in HT and TD subjects’ gut
microbiota, we searched for “microbiome shift” events. These are
defined as when the Bray–Curtis dissimilarity between an individual’s
consecutive samples (within a week) is greater than the dissimilarity
between individuals (Supplementary Fig. 3b, seeMethods)25. Using this
approach, we identified 141 shift events (34.5%, 141/408). TD indivi-
duals had a significantly higher proportion of shift events than HT
subjects (TD: 40.4%, 113/280; HT: 21.9%, 28/128; Fisher exact, P < 0.001;
Supplementary Table 6), and the majority of TD individuals’ shift
events occurred during a diarrheal episode (67.3%, 76/113; Supple-
mentaryTable 6). These findings suggest that HT and TD subjects have
similar gut microbial stability patterns, but large-scale disruptions
occur most frequently during diarrhea.

While prior studies on infectious diarrhea among non-traveling
native populations suggest anorderly reversal to the pre-diarrhea state
within 1 month of the diarrheal episode15, our cohort’s microbial
compositions increasingly diverge from baseline over the course of
individuals’ stays (Fig. 2d, LMM P <0.001), and did not return to
baseline at least for the duration of their stay. Thus, we sought to
determine how experiencing diarrhea affects divergence from base-
line, and whether rates of divergence might be a predictor of who will
get diarrhea. We compared the Bray–Curtis dissimilarities of HT and
TD subjects’ 1st week baseline sample with a non-diarrheal sample
collected 1 month later. We further subdivided the TD group between
those who experienced diarrhea before 1 month (Early TD) or after
1 month (Late TD). Early TD subjects had significantly higher dissim-
ilarity after 1 month of travel than the other groups (Fig. 2e, Wilcoxon
signed-rank test, P < 0.01). This suggests that while all subjects’
microbiomes continuously diverge from baseline during travel,

diarrhea is an impactful perturbation that significantly increases this
divergence. Further, weobservedno significant differencebetweenHT
and Late TD subjects (Fig. 2e, Wilcoxon signed-rank test P >0.05). This
suggests that the divergence of Late TD subjects prior to diarrhea is
indistinguishable from those who will not get diarrhea (HT), thereby
precluding the use of diversity metrics alone as an early predictor of
who will get diarrhea. This motivated us to quantify the taxonomic
differences between subject groups at higher resolutions.

We found that diarrhea significantly altered the composition of
major gut microbial phyla (Supplementary Fig. 3c). Diarrheal samples
were characterized by enrichment for Proteobacteria and Bacter-
oidetes, and a depletion of Firmicutes, resulting in a lower Firmicutes-
to-Bacteroidetes ratio (Supplementary Fig. 3d, Wilcoxon signed-rank
test, P <0.001). This is consistent with other gastrointestinal diseases
and is associated with a dysbiotic gut microbial architecture26. How-
ever, we observed no significant difference in the Firmicutes-to-
Bacteroidetes ratio between the before (PreTD) and after diarrhea
(PostTD) samples (Supplementary Fig. 3d, Wilcoxon signed-rank test,
P >0.05), suggesting that, while the overall composition does not
return to the pre-diarrheal state, these specific phyla quickly recover.
At species-level resolution, we identified 39 differentially abundant
species associated with diarrheal and non-diarrheal samples using
multivariable regression models (using MaAsLin227) (Fig. 2f–g, Sup-
plementary Fig. 4). In diarrheal samples, we found an elevated relative
abundance of bacteriawith knowndiarrhea-causing pathogenic strains
(e.g., E. coli, and Shigella spp.). Additionally, we saw an increased
abundance of Proteobacteria (e.g., Bilophila spp., Sutterella wads-
worthensis, Parasutterella excrementihominis, and members of the
Burkholderiales order (Fig. 2f–g). Previous studies have linked these
taxa to host physiology and health outcomes28–32, such as an increased
abundance of Bilophila spp. being associatedwith inflammatory bowel
disease29, and increased abundance of Sutterella wadsworthensis being
associatedwith ulcerative colitis etiology and fecalmicrobiota transfer
treatment failure30–32. We also observed a significant increase in the
relative abundance of several taxa within the Bacteroidetes phylum
(e.g., Odoribacter splanchnicus, Bacteroides fragilis, Bacteroides vulga-
tus), consistent with previous reports on diarrheal diseases33,34. Bac-
teroides are major producers of sphingolipids that regulate
inflammation and immunity in the human gut35, and a bloom during
diarrhea may reflect an effort to restore microbial homeostasis36,37. In
contrast, several taxa belonging to the Firmicutes phylum were
depleted in diarrheal samples (e.g., Ruminococcus bromii, Eubacterium
rectale, Clostridium bartlettii, Coprococcus spp.). Many Firmicutes are
residents of healthy guts and are known to play key functions,
including maintenance of gut barrier function and digestion of com-
plex polysaccharides by producing short-chain fatty acids38. A
decreased representation of Firmicutes has also been associated with
other gastrointestinal diseases, including ulcerative colitis and Crohn’s
disease39.

In concordance with prior studies40–42, no identifiable etiologic
agent was detected in ~50% of the diarrheal samples in our study, even

Fig. 1 | Study design, data assembly, and meta-analysis for cohort of interna-
tional travelers. aHighlighted regions of the map show countries of residence for
travelers in our cohort who visited the Andean city of Cusco, Peru between June
2012 and July 2016. Most traveled from North America or the European sub-
continent. The Circos plot at the bottom shows the distribution of samples col-
lected per individual, color-coded by their country of residence. b Sampling
strategy and experimental design: Subjects whodid not experiencediarrhea during
course of stay were classified as Healthy Travelers (HT, blue), while those who
experienced at least one episode of diarrhea were classified as Travelers with
Diarrhea (TD, orange). Collected stool samples were processed to obtain taxo-
nomic, and resistome profiles using metagenomics sequencing. A subset of sam-
ples were cultured to obtain suspected diarrheagenic pathogens, tested for
antibiotic susceptibility, and sequenced for detailed comparative genomic analysis.

Additionally, functional metagenomics libraries were prepared and screened
against 17 antibiotics to characterize resistomes in the stool samples. c Upset plot
depicting the frequency of diarrheagenic pathogens that were detected using
multiplex PCR in non-diarrhea (green) and diarrhea samples (red). d Antibiotic
susceptibility testing of diarrheagenic E. coli isolates against 20 antibiotics. Per-
centage and coloring of heatmap shows the proportion of isolates in a DEC
pathotype resistant to the given antibiotic, with colored bar indicating antibiotic
class. d PERMANOVA test quantifying the total variance explained by metadata
variables in the taxonomic (MetaPhlAn217) and resistome (ShortBRED18) profiles.
The y axis indicates the total variance explained and the x axis represents different
metadata variables that were tested (*P <0.05; **P <0.01; ***P <0.001). Underlying
data are provided in the Source Data file.
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Fig. 2 | Travelers’ gut microbiome compositions change throughout travel,
with diarrhea-causing large-scale disruptions. a Taxonomic diversity (Shannon
index) of subjects’ microbiomes throughout their length of stay, as days post-
arrival. Points are individual samples, colored by sample type with dotted lines
connecting samples from the same subject. Solid lines show the best fit line for
different sample types: HT (blue), diarrheal (red), non-diarrheal preTD (green), and
postTD samples (yellow) (n = 617, LMM, all P >0.05), and the gray shading repre-
sents 95% confidence interval (CI).bBoxplots of the taxonomicdiversity of subject-
matched diarrheal and non-diarrheal samples collected within 2 weeks (n = 171,
LMM, P[DiarrheaTD vs Non-diarrhea PostTD] = 3.4e-02). c Bray–Curtis dissim-
ilarities between consecutive samples from each subject, plotted throughout their
length of stay with dotted lines connecting samples from the same subject. Solid
lines show the best fit for different traveler types (n = 291, LMM, P[Traveler type]
<0.001) d Bray–Curtis dissimilarities between each subjects’ samples and their 1st-
week baseline sample (n = 291, LMM, P[Time difference] <0.001) e Boxplots of
Bray–Curtis dissimilarities calculated between 1st week baseline sample and a

non-diarrheal sample collected 1 month after arrival in HT and TD subjects’. TD
subjects were further sub-divided into Early TD (who experienced diarrhea
<1 month of arrival) and Late TD (who experienced diarrhea >1 month after arrival)
(n = 36,Wilcoxon test). Boxes in the boxplots showmedian andquartiles; error bars
extend to the values within 1.5 interquartile range. fMicrobial species significantly
associated with diarrhea samples detected using MaAsLin227 where subjects were
included as random effects and other metadata variables as fixed effects. The sig-
nificant associations were corrected for multiple-hypothesis testing using
Benjamini–Hochberg method with FDR <0.25. The first column depicts the log
normalized FDR value calculated by −sign(coeff)*log(qval), the second column
shows the phylum and the barplot shows the effect size of each species. g The
density ridgeline plot of significantly associated species in different sample types
normalized by the median relative abundance of non-diarrheal HT samples. Left
barplot, fraction of samples below detection limit. Underlying data are provided in
the Source Data file.
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when using multiplex PCR. Although we observed significant altera-
tions for a number of species between the diarrheal and non-diarrheal
samples (Fig. 2f), these changes couldbe either a signatureofdysbiotic
gut or disease-specific alteration. The disease-specific microbiome
changes may reflect potential pathogens or pathobionts exploiting
diarrhea-induced changes in the intestinal milieu. Thus, to discern
diarrhea-specific microbial signatures, we subsampled the diarrheal
samples (TD) and non-diarrheal samples collected before diarrhea
episode (PreTD) and employed machine learning methods on the
abundances of key taxa. Specifically, we applied three approaches viz.
ElasticNet, Lasso, and Random Forest (RF) using SIAMCAT43. Among
these, the RFmodel had the best accuracy (84.9%) and precision-recall
(89.7%) (Fig. 3a). Consistent with prior observations, 8 of these 20 top
discriminatory species belonged to the Bacteroides family. The top
five species with the largest effect sizes were C. bartlettii, E. coli, Pep-
tostreptococcaceae unclassified, L. lactis, and B. thetaiotamicron. Apart

from E. coli, the other four species are key commensal species that
were depleted during diarrhea.

Lastly, to understand how these individual taxa interact with each
other during diarrhea, we built two unsupervised co-occurrence net-
works from diarrheal and non-diarrheal samples (using SparCC44)
(Fig. 3b) and then compared these correlation networks using
Netshift45 (Fig. 3c) to identify “driver” taxa responsible for differences.
This identified 14 taxa that showed significant shifts in their interac-
tions in diarrhea compared to non-diarrheal samples (Fig. 3c, high-
lighted in red). Among them, E. coli and Escherichia spp. Unclassified
were enriched during diarrhea, gained connectivity, and were nega-
tively associated with key commensal species such as Eubacterium
rectale. Bacteroidetes species such as B. uniformis and B. caccae were
also enriched, gained interactions, and formed a close sub-network of
positive interactions with other Bacteroides species (Fig. 3b, high-
lighted in orange). During diarrhea, other commensal microbes

Fig. 3 | Development of machine learning classifier that uses species abun-
dances to distinguishbetween diarrheal and non-diarrheal sample types. a The
heatmap showing the relative abundances of top 20 discriminatory taxa between
diarrheal and non-diarrheal PreTD types. Barplot depicts the effect size of the
discriminatory taxa obtained from Random forest model. Cross-validation accu-
racy depicted as AUC-ROC and Precision-recall curve for the models built with
three independent methods: ElasticNet (blue), Lasso (red) and Random Forest
(green). b Co-occurrence network of diarrheal (left) and non-diarrheal (right)
samples. The sizes of the nodes are proportional to the mean relative abundances
of the species. The edges between two nodes represent significant correlations
(green: positive; red: negative) between the two species. The orange highlighted

region shows Bacteroidetes that are enriched in diarrhea (left) compared to non-
diarrhea (right) network. The blue-highlighted region shows a conserved relation-
ship among Firmicutes in both networks. c Circos plot depicting the common sub-
network species between diarrheal and healthy sample networks. Node sizes are
proportional to their scaled NESH score obtained from Netshift45, and species that
gained connectivity in the diarrhea network compared to the healthy network are
colored red. Connectivity changes between the common subnetworks are repre-
sented by connections between these species (red: connections that are unique to
diarrhea samples network; blue: connections that are shared in both networks;
green: connections that are unique to non-diarrheal samples network). Underlying
data are provided in the Source Data file.
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including F. prausnitzii and Ruminococcus bromii were depleted and
lost their connectivity to other microbial species (Supplementary
Table 7). While the gut microbiome underwent major remodeling
during diarrhea, a sub-network built from D. longicatena, D. for-
micigenerans, E. hallii, R. obeum, and R. sp_5_1_39BFAA remained con-
served with no change in interactions between each other (Fig. 3b,
highlighted in blue). Notably, many of these interconnected and dif-
ferentially interacting taxa were also found to be differentially abun-
dant by the LME (MaAsLin227) (Fig. 2f), as well discriminatory between
PreTD and TD sample types by the RF model (SIAMCAT43) (Fig. 3a).

Temporal dynamics of antibiotic resistance gene diversity and
abundance
Having characterized the dynamics of changes to the gut microbiome
during travel, we next sought to determine if similar trends char-
acterize the travelers’ gut antibiotic resistomes. To capture both
known and potentially sequence-novel functional ARGs encoded by
international travelers’ gutmicrobiota in a high-throughput, sequence-
and culture-unbiased manner, we constructed 21 functional metage-
nomic libraries (representing 89.5 GB) from 210 stool samples ran-
domly selected from the full set of 718 samples (see Methods). These
libraries were screened against 17 antibiotics (Supplementary Data 1),
with resistance found against all antibiotics screened except for
ciprofloxacin andmeropenem (Supplementary Fig. 2f). Resistance was
most abundant for trimethoprim and tetracyclines, and lowest for
colistin and 3rd/4th generation cephalosporins. The metagenomic
inserts from these resistant transformants were sequenced, assem-
bled, and annotated for AR function using our previously published
pipeline18,19 (see Methods). This yielded 2,065 unique ARG sequences,
expanding the catalog of knownARGs harbored by the gutmicrobiota.
We then built an extensive ShortBRED18 AR protein sequence marker
database by incorporating ARG sequences from this cohort (n = 2065),
12 other published functional metagenomic studies (Supplementary
Table 8), and two curated ARG databases (CARD46 v2.2.0; NCBI-AMR47

v1.0), resulting in a database consisting of 6,594 unique marker
sequences representing 2,314 ARG families (Supplementary Data 2).
The relative abundanceof ARGs in the sequencedmetagenomeof each
stool sample was then quantified by mapping the shotgun data to the
ShortBRED marker database.

The diversity of gut resistomes harbored by travelers’ gut micro-
biota demonstrated temporal stability for the duration of travel.
Similar to microbiome diversity, Shannon diversity of ARGs from HT
andTD subjects’ samples showedno significant changeover the length
of travel (Fig. 4a; LMM, P > 0.05, Supplementary Table 9a). However,
diarrheal samples ARG richness significantly increased over time
compared to HT samples (LMM, P <0.01; Supplementary Table 9a),
suggesting subjects who experienced diarrhea later had a greater
diversity of ARGs. We also did not observe a significant change in
cumulative ARG abundance (RPKM) over length of travel (Fig. 4b,
LMM, P > 0.05, Supplementary Table 9a). We observed a marked
increase in ARG richness (LMM, P <0.001) and abundance (LMM,
P <0.001) among individuals who reported using antibiotics in the
preceding week (Supplementary Table 9b). When comparing the beta-
diversity of individuals’ gut resistomes from consecutive samples (by
Jaccard and Bray–Curtis index), we observed TD subjects’ samples
were significantlymoredissimilar thanHT, indicating theTD resistome
is less stable (Supplementary Fig. 5a, LMM, P <0.05; Supplementary
Table 10a). We also observed significantly increased similarity by Jac-
card index in later samples, suggesting greater resistome restructuring
occurs earlier in travel (LMM P < 0.05; Supplementary Table 10a).
Further, when comparing subjects’ samples to their 1st week baseline
sample, we observed significantly increased dissimilarity with
increasing time differences between the samples compared, indicating
restructuring occurs throughout the length of travel (Supplementary
Fig. 5b, LMM, P < 0.05; Supplementary Table 10b).

However, diarrhea transiently increases ARG diversity and abun-
dance. Comparison of diarrheal samples with matched non-diarrheal
samples collected within 2 weeks (PreTD) showed diarrheal samples
had significantly increased ARG richness (GLMM, P (DiarrheaTD)
<0.001), Shannon diversity (Fig. 4c, LMM, P (DiarrheaTD) <0.001), and
cumulative ARG abundance (Fig. 4d, LMM, P (DiarrheaTD) <0.001,
Supplementary Table 9c). While ARG richness and diversity recovered
to PreTD levels within 2 weeks after diarrhea (PostTD), ARG abundance
remained significantly high (Fig. 4d; LMM, P <0.001, Supplementary
Table 9c). Further, we find this increase in abundance of ARGs during
diarrhea was significantly correlated with a decrease in microbial
diversity at the species-level (Fig. 4e, LMM, P <0.001) but an increase in
relative abundance of Enterobacteriaceae (Fig. 4e, LMM, P <0.01). This
suggests that themajority ofAMRdeterminants indiarrheal samples are
likely concentrated within Enterobacteriaceae species. Additionally, we
observed a significant negative correlation of ARG abundance with
species belonging to Ruminococcaceae (LMM, P <0.001), Eubacter-
iaceae (LMM, P <0.001), Coriobacteriaceae (LMM, P <0.01), and Bifi-
dobacteriaceae (LMM, P<0.01) (Supplementary Fig. 5c). Finally, we
sought to identify specific ARGs that were differentially abundant in
diarrheal samples usingMaAsLin227. Diarrheal samples had an increased
abundance of antibiotic efflux pumps, β-lactamases (Class A and Class
C), and aminoglycoside resistance genes, while non-diarrheal samples
were enriched for tetracycline ribosomal protection genes (Fig. 4f–g,
Supplementary Fig. 5d, Supplementary Fig. 6). Importantly, many of
these ARG families that are enriched in diarrhea samples are commonly
encoded in Enterobacteriaceae species.

Phenotypic and phylogenetic analyses of diarrheagenic
pathogens
As bacterial etiologies are the predominant cause of travelers’
diarrhea48, we evaluated both diarrheal and non-diarrheal stool sam-
ples for the presence of common diarrheagenic pathogens. We per-
formed multiplex PCR on 696 stool samples and cultures to detect
Campylobacter spp., Shigella spp., norovirus (GI, GII), and six strains of
diarrheagenic E. coli (DEC) (Supplementary Table 11; Supplementary
Information). At least one diarrheagenic pathogenwasdetected in 217/
696 samples (31.2% overall; 62/142, 43.7% diarrheal; 155/554, 28.0%
non-diarrheal). No pathogen was detected in 80/144 (55.6%) diarrheal
samples, consistent with the previous reports7. DEC were the most
common group of pathogens detected (193/217, 88.9%), followed by
Norovirus (29/217, 13.4%), Campylobacter spp. (18/217, 8.3%), and Shi-
gella spp. (3/217, 1.4%) (Fig. 1c; Supplementary Table 11; Supplementary
Information). Simultaneous detection of ≥2 enteropathogens was
observed (24/217, 11.1%), predominantly for different DEC strain types
(19/217, 8.8%). To analyze DECs directly, we cultured 212 DEC isolates
from 195 fecal samples (157 isolates from 149 non-diarrheal samples,
and 55 isolates from46diarrheal samples). To assessAMRphenotypes,
we performed antimicrobial susceptibility testing on 169 DEC isolates
against 20 antibiotics belonging to 12 antimicrobial classes (Supple-
mentary Table 12). The majority of DEC isolates (66.9%, n = 113) were
multidrug-resistant (MDR; defined as resistance to ≥1 antimicrobial
agent in ≥3 antimicrobial classes; Supplementary Fig. 2e).We observed
moderate rates of resistance to azithromycin (AZM; 23.7%, n = 40) and
ciprofloxacin (CIP; 7.7%, n = 20), two antibiotics recommended for the
treatment of acute diarrhea48 (Supplementary Fig. 2e).

Next, we sequenced the genomes of all 212 DEC isolates to
investigate the genomic diversity, ARG content, and virulence poten-
tial of these enteropathogens. The draft assemblies were quality fil-
tered and 23 isolates with poor assembly metrics were excluded
(Supplementary Fig. 2c, d, see Methods). We analyzed the population
structure of the quality filtered genomes, along with 40 publicly
available E. coligenomesofdiverse pathotypes, by constructing a core-
genome (2216 genes, ≥95% identity) maximum-likelihood phyloge-
netic tree (using Roary49 and RAxML50) (Fig. 5). The phylogenetic
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clusters were independently confirmed using BAPS51. Our DEC isolates
grouped into 6 distinct clusters corresponding to phylogroups A, B1,
B2, D, E, and F. The majority belonged to Clade A (106/189; 56.1%) and
Clade B1 (56/189; 29.6%). No significant association between phy-
logroups and sample type (diarrheal vs. non-diarrheal) was observed
(Fishers exact test, P >0.05), except for isolates belonging to Clade B2
and Clade F that were isolated only from non-diarrheal samples.

DEC strains isolated from non-diarrheal samples in TD subjects
encoded more ARGs than isolates from HT subjects (Fig. 6a; Supple-
mentary Fig. 7a, b) (non-diarrheal HT vs. non-diarrheal TD,Wilcox test,

P <0.05). These isolates were significantly enriched for blaTEM-148, sul2,
aph6, and tetA genes (Fig. 6a). Notably, several DEC strains isolated
from TD subjects also carried other clinically significant AMR genes
including, ESBL genes (blaCTX-M, n = 7; blaOXA, n = 3), AmpC (blaCMY,
n = 1), and mcr-1 (n = 1). Notably, mcr-1 was first described in the lit-
erature in 201652,53, whereas thismcr-1harboring isolatewas cultured in
2013. Colonization with multidrug-resistant DEC strains could have
long-termconsequences both during and after travel, such as infection
by the pathobiont or horizontal transfer of its MDR genes to another
pathogen leading to treatment failure or other adverse clinical
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outcomes, and spread to new hosts during and after travel (e.g.,
household members, healthcare facilities)3,4.

We also observed several ARG clusters associated with plasmids.
Pairwise co-occurrence comparisons of accessory AR determinants in
the same contig (within 5 kb) revealed highly interconnected groups of
ARGs amongDEC isolates (Fig. 6b). Themost common cluster of ARGs
frequently detected together (blaTEM-148, sul2, aph6, aph3, emrE, and
tetA) was also found to be significantly associated with plasmids (49%;
25/51; Fisher’s exact test; FDR P < 0.05). Several other ARGs were also
found in plasmid sequences but could not be evaluated because of
their overall low frequency in the dataset (Supplementary Table 13).
We next analyzed the genomic context of these ARGs to assess
transmission risk. We identifiedmobile genetic elements (MGE) within
5 kb of the ARGs using MGEfinder54 (Fig. 6c, Supplementary Fig. 8),
suggesting theseARGs are able to transfer horizontally.We thenbuilt a
co-occurrencenetwork of theobservedARGswithMGEs and identified
clusters that were more frequently observed together in the isolates.
We identified four major clusters that include ARGs conferring resis-
tance via different mechanisms (Fig. 6b). The genes sul2, aph6, aph3,
and blaTEM-148were themost commongroupobserved, occurring in 60
isolates (39.1%). These genes were often observed with the IS26
insertion element (n = 12) and Tn2 unit transposon (n = 12), as well as
withdfrA8/dfrA14 genes (n = 20) andothermobile elements like IS903.
Co-occurrence and co-transfer of these ARGs raise concerns over their
potential expansion and dissemination.

We identified instances of temporary (1 timepoint) and persistent
(≥2 timepoints) colonization byDEC isolates, aswell as co-colonization
of multiple DEC strain types in a single timepoint. For individuals with
≥2 DEC isolates collected from their longitudinal stool samples, we
compared the phylogenetic relatedness of those isolates using
StrainSifter55 (Supplementary Fig. 9). The single-nucleotide variation
(SNV) per megabase of isolates from the same individual was highly
variable, ranging from 0 to 16,833 SNVs. For example, DEC isolates
fromHT-P041 ondays 33, 39, and45hadzeroSNVs, suggesting a single
strain of E. coli had persisted in that individual’s gut throughout the
two-week period (Supplementary Fig. 9; font colored yellow). In con-
trast, isolates cultured from the diarrheal sample of TD-P004 collected
on day 77 differed by 9,187 SNVs per megabase, suggesting simulta-
neous colonization by distinct DEC strain types (Supplementary Fig. 8;
font colored purple). Supporting the case for transient co-coloniza-
tion, these isolates also showed distinct ARG and VF profiles. Co-
existence of multiple DEC strains with distinct resistome profiles in a
diarrheal sample can potentially affect the ability to treat diarrheawith
antibiotics. Lastly, we calculated the pairwise SNV count from isolates
collected longitudinally from the same subjects, and observed isolates
from HT subjects had greater stability than those from TD subjects,
measured as fewer SNVs (HT median pairwise SNV count = 5218; TD
median SNV count = 8922; t test P <0.05). We speculate that, as with
the gut microbiome, TD subjects’ E. coli are similarly stable to HT

subjects except during diarrheal episodeswhen large-scale disruptions
occur (as measured by shift events; Supplementary Table 6) and
commensal E. coli are replaced by DEC. However, in this study, we do
not have the high-resolution sampling around diarrheal episodes
necessary to test this. We also note that these measurements of strain
diversity, as well as counts of temporary and persistent colonization
are likely an underestimate, as higher-resolution studies with greater
sampling frequency have shown that transient colonization of inter-
national travelers can last just one or a few days56, and strains could
have persisted under the detection threshold of our culture methods.

Discussion
Herewe report a large longitudinal interrogation of hostmicrobiota-
pathogen interactions and acquisition ofMDROduring international
travel to a region with a high-infectious burden. We observed tra-
velers’ gut microbiome compositions diverging significantly from
their baseline microbial architecture throughout the length of their
stay, with the greatest change occurring during the first month of
stay. This is likely explained by sustained exposure to a non-native
environment with different microbial ecologies, as well as changes
in diet, surrounding climate, and other environmental factors (e.g.,
altitude)8,57–59. Presumably, travelers’ microbiomes were shifting
towards a more local state wherein this divergence would stabilize;
however, we cannot definitively claim this as our cohort does not
include samples from the local population, nor was their stay as long
enough as observed in other traveling populations which took
6–9 months to acclimate16. The microbiome diversity of HT subjects
showed remarkable temporal stability, while those of TD subjects
were less stable and had greater variation. The overall temporal
stability of travelers’ gut microbiomes was attributed to higher
baseline microbial diversity. During diarrheal episodes we observed
a dysbiotic microbial architecture marked by the enrichment of
Bacteroidetes and Proteobacteria and contrasting depletion of Fir-
micutes, similar to the previous reports26. Unlike studies in native
populations15, the microbiomes of our travelers did not return to a
pre-diarrheal state even after 1 month of the diarrheal episode,
which is likely attributed to the microbiome’s continual divergence
due to the non-native environment. We also identified several taxa
that were differentially abundant between non-diarrheal and diar-
rheal samples, which were then used to develop a classification
model that can distinguish diarrheal from non-diarrheal disease
states with high accuracy and precision-recall. This underscores the
ability of microbiome-based biomarkers to differentiate between
disease and healthy states; however, more studies using traveler
cohorts visiting different geographical locations are needed to
determine the generalizability of these features, and more
mechanistic studies with model systems (e.g., microbiota-
humanized gnotobiotic animals60–62) would be needed to elucidate
the putative causal role of these species.

Fig. 4 | Diarrhea increases ARG diversity and abundance. a The alpha diversity
(Shannon index) of subjects’ resistomes throughout the length of their time inPeru,
asdayspost-arrival. Points are individual fecal samples, coloredby sample type (i.e.,
diarrhea or non-diarrhea), with dotted lines connecting samples from the same
subject. Solid lines show the best fit for different traveler types: HT (blue), diarrheal
(red), non-diarrheal pre-TD (green), and post-TD samples (yellow) (n = 617, LMM,
P >0.05) and the gray shading represents 95% confidence interval (CI).
b Cumulative abundance of ARGs (log10 scale) over time. Points are individual
samples with dotted lines connecting samples from the same subject. Solid lines
show best fit with 95% CI (gray shading) of samples from different traveler types
(n = 617, LMM, P >0.05). c Boxplots of ARG diversity (Shannon index) of subject-
matched diarrheal samples with non-diarrheal samples collected within 2 weeks of
diarrhea. Accompanying violin plots show the distribution (n = 171 samples, two-
sided Wilcoxon test). d Cumulative abundance of ARGs of subject-matched diar-
rheal samples with non-diarrheal samples collected within 2 weeks of diarrhea.

Accompanying violin plots show the distribution (n = 171 samples; two-sided Wil-
coxon test). e Correlations between cumulative abundance of ARGs (log10 scale)
and microbial species diversity (top) and relative abundance of Enterobacteriaceae
(log10 scale) (LMM; all P <0.001). f ARGs that enriched or depleted in diarrheal
samples compared to non-diarrheal samples. The significant associations were
detected by MaAsLin227 where other metadata variables (age, sex, sample type,
region, length of stay, and antibiotics usage) were used as fixed effects in the LMM.
g Relative abundance distribution of differentially abundant ARGs in different
sample types normalized by the median relative abundance of non-diarrheal HT
samples (LMM; all P <0.001). Left barplot, fraction of samples below detection
limit. Boxes in the boxplots show median and quartiles; error bars extend to the
valueswithin 1.5 interquartile range.P values aremultiple-hypothesis test corrected
using Benjamini–Hochberg (FDR) method. Underlying data are provided in the
Source Data file.
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By complementing metagenomic sequencing with functional
metagenomics20,63–65, we comprehensively assessed the ARGs har-
bored by travelers’ gut microbiota. In contrast to other studies2, we
found that travelers’ resistomes were temporally stable throughout
their stay, with marginal increases noted in ARG abundance over time.
This difference can be partially attributed to different travel destina-
tions, as the country and region visited can have profound effects on
ARG acquisition3,66,67. Nonetheless, we found that diarrheal events
significantly altered travelers’ microbiomes and resistomes, resulting
in the enrichment of ARGs—particularly those encoded by Enter-
obacteriaceae species. This observation was corroborated by quanti-
tative analysis of DEC (a keymember of the Enterobacteriaceae family)
isolates, where we found isolates from TD subjects encoded more
resistance genes than those from HT subjects even during

asymptomatic periods.We further identified ARGs strongly associated
with TD subjects and found a small cluster of plasmid-borne,
resistance-conferring genes (blaTEM-148, sul2, aph6, and tetA) likely able
to be mobilized through horizontal gene transfer (HGT). Collectively,
these observations suggest that travelers’ diarrhea is a significant risk
factor for increased carriage of MDR E. coli and ARGs in the micro-
biome. The acquisition of these MDROs can have long-term con-
sequences for the traveler, such as HGT of ARGs to another pathogen
that could potentially cause treatment failures, longer hospitalization
stays, and additional impacts on public health systems as they spread
to new hosts upon return from travel68.

Althoughwe identified antibiotic use for prophylaxis or treatment
during travel as a significant risk factor for increased ARG carriage, we
were unable to separate the effect of specific antibiotics. Controlled

Fig. 5 | Diarrheagenic E. coli isolates are phylogenetically diverse and encode
many ARGs and VFs. Phylogenetic tree inferred from core-genome alignment of
189 E. coli isolates (this study) and 40 published E. coli reference genomes (marked
by *). Phylogroups are depicted as colored branches of the tree. Annotations, from

inner to outer ring, denote: Gray barplots denote ARG count; E. coli pathotype
(assigned by the presence/absence of specific VFs;Methods); VF count; and sample
type (diarrheal or non-diarrheal). Underlying data are provided in the Source
Data file.
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intervention studies focused on the impacts of specific treatment
regimens and/or prophylaxes (e.g., prebiotics, probiotics, synbiotics)
on the gut microbiome and resistome could further inform best
practices to mitigate the collateral damage from antibiotic use69–72.
While it is unlikely that all taxa and ARGs that correlate with travel and
diarrhea outcomes in our study would translate to other countries,
which could have different infectious diseases burdens and ARG
abundances, we predict that our findings regarding microbiome and
resistome dynamics and acquisition of MDROs may be broadly gen-
eralized. Further multi-cohort travelers’ studies to countries with dif-
ferent pathogen etiologies are warranted to best inform treatment and
mitigation strategies that minimize microbial disruption and MDRO
acquisition during travel.

Methods
Study design and cohort overview
Our cohort of international travelers was comprised of Spanish lan-
guage students who were enrolled at the Amauta Spanish School in
Cusco, Peru. A clinic staffed by a study physician was established
inside the school to enroll and follow subjects. Travelers aged ≥18
years, able to understandwritten English, and enrolled at the school as
students were eligible. The majority of these travelers stayed in lod-
ging provided by the school within its premises. The study physician
explained the purpose and procedures of the study to potential par-
ticipants within 24 to 48 h of their arrival in Cusco city. Those who
agreed to participate signed an informed consent formand completed
a standardized enrollment questionnaire, that collected baseline

Fig. 6 | ARG content of diarrheagenic E. coli isolates. a Boxplot shows higher
number of unique ARGs carried by DEC strains in non-diarrhea samples of TD
subjects compared to HT subjects (n = 189, Wilcoxon test, P <0.05). The colored
data points represent different DEC strain. P values are multiple-hypothesis test
corrected using Benjamini–Hochberg (FDR) method. Boxes show median and
quartiles; error bars extend to the values within 1.5 interquartile range. Dotplot at
the bottom shows the prevalence of ARGs in DEC isolates obtained from non-
diarrheal HT and non-diarrheal TD subjects’ samples. The annotated genes

(blaTEM-148, sul2, aph6, and tetA) were significantly associated with TD subjects
after FDR correction (Fisher exact test; P <0.05). bCo-occurrence network of ARGs
(circles) andmobile elements (triangles). The edges between two nodes represents
the correlation of ARGs andmobile elements in the same contig (within 5 kb). Solid
lines represent significant relationships after FDR correction (Student’s t test,
P <0.05) and shaded regions represent subnetworks. c Examples of arrangements
of ARGs and mobile elements identified on the same contigs. Underlying data are
provided in the Source Data file.
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demographic and epidemiologic data, as well as medical and travel
history (Form A in Supplemental Information). Subjects were also
provided a stool collection kit and instructions to collect a baseline
stool sample with their next bowel movement. Weekly stool samples
were collected from subjects throughout their stay, and a weekly
questionnaire collected data on unreported diarrheal episodes and
dietary habits. Subjects were instructed to immediately communicate
with the study physician when having a diarrheal episode and before
taking any medication (e.g., antibiotics). Diarrhea was defined as pas-
sing one or more semi-liquid or watery bowel movements associated
with gastrointestinal symptoms such as abdominal pain, cramping
and/or nausea. Subjects reporting diarrhea were asked to provide an
extra stool sample and were examined daily. During the diarrheal ill-
ness, 70 participants were prescribed antibiotics (e.g., ciprofloxacin,
azithromycin) supplemented with oral rehydration therapy, and the
remaining individuals were advised only oral rehydration therapy. Few
individuals (n = 8) took antispasmodic and antiparasitic medication.
Physical exam findings, symptoms, duration, and medications were
documented in an acute diarrhea questionnaire (Form B in Supple-
mental Information). Diarrheal episodes were treated as independent
events if an asymptomatic period of at least seven days occurred
between them. Samples were classified as non-diarrhea or diarrhea
based on whether they were collected during a diarrheal episode or
not. Samples were also given a stool grade based on the Bristol stool
form scale (BSS) of stool consistency, ranging from grade 1 (normal,
hard) to grade 4 (loose, diarrheal).

The study protocol and its amendments were reviewed and
approved by the Institutional Ethics Committee of the Universidad
Peruana Cayateno Heredia, the Institutional Review Board of the US
Naval Medical Research Unit No. 6 (NAMRU-6), and the Washington
University in St. Louis Institutional Review Board.

Empirical selection of diarrheal samples for analysis
Since diarrhea is a complex clinical infection and reliance on self-
reported information alone can be misleading, we implemented a
multi-factor selection procedure using epidemiological and clinical
information to screen diarrheal samples prior to downstream ana-
lyses. First, we verified that the diarrheal samples were collected
within the documented onset and recovery dates. If the recovery
date was missing from the metadata, only diarrheal samples col-
lected within two days of onset were included; if both onset and
recovery dates were missing, then only samples that had a stool
consistency of 3 or 4 (semi-liquid to liquid) were included. We then
implemented a modified scoring scheme73,74 referred here as the TD
score, to further minimize the false positives (Supplementary
Table 14). The TD score combined the presence of clinical signs
(such as fever, vomiting, dehydration e.t.c.) and macroscopic data
(stool consistency) collected during the diarrheal episode into a
singlemetric. These parameters included: (1) stool frequency (in the
last 24 h) and consistency; (2) duration of diarrhea; (3) participant-
reported dehydration; (4) behavioral signs (e.g., nausea, fatigue,
headache, bloating, anorexia) and/or clinical symptoms (e.g., tem-
perature >38 °C); (5) pulse rate >100; and (6) presence of blood in
stool. Each parameter was further divided into thirds and assigned
equal points based on the severity of the symptom (1 point: bottom-
third, 2 points: middle-third, and 3 points: upper-third) and were
aggregated across parameters. We analyzed the TD score validity by
comparing it with individual factors such as stool grade, maximum
stool frequency in 24 h, and duration of diarrhea. While the indivi-
dual factors did not necessarily correlate with each other, the TD
score was significantly correlated with the given factors (Supple-
mentary Discussion). Diarrheal samples with a TD score greater than
1.5 were included in the analysis. Using this multi-faceted filtering
strategy, we selected 102 diarrheal samples total for downstream
analyses.

Stool specimen processing
All collected stool samples were delivered to the onsite clinic. Samples
were refrigerated at 4 °C and preserved in Cary Blair media then
transported to the Universidad Peruana Cayetano Heredia laboratory
in Cusco, Peru within 2 h. Stool samples from diarrheal episodes that
started during the night hours were collected by study personnel and
refrigerated at 4 °C until they could be delivered the next morning. In
the laboratory, stool samples were examined macroscopically for
consistency and appearance, microscopically for parasite detection
and fecal leukocytes, and underwent routine stool culture followed by
antimicrobial sensitivity testing. Aliquots of fresh stool with no pre-
servatives were frozen at −80 °C. Primary isolates and fresh stool ali-
quots were shipped in dry ice on amonthly basis to NAMRU-6 in Lima,
Peru for further workup and long-term storage. Samples stored at
−80 °C were shipped to Washington University in St. Louis, MO where
the samples were stored at −80 °C until DNA extraction.

Stool assessment and cultures for enteropathogen detection
and antibiotic susceptibility testing of isolates
Stool samples were collected and processed immediately upon arrival
at the nearby laboratory in Cusco. Gross examination and Hemoccult
card tests (Beckman Coulter, Brea, CA) were used to evaluate for fecal
gross and occult blood, respectively. Stool microscopy using direct
iodine wet mount, modified Kinyoun stain, and methylene blue stain
techniques were performed to examine for the presence of parasite
ova, cyst, and fecal leukocytes, respectively as previously described75.
Bacterial cultures were performed for the presence of pathogenic E.
coli, Salmonella spp., Shigella spp., Campylobacter spp., Aeromonas
spp., Plesiomonas spp., and Vibrio spp. All primary, enrichment, and
biochemical differentiation culture media, BBL Sensi-Discs suscept-
ibility discs, and catalase and oxidase test reagents were purchased
fromDifco BD Bioscience (Franklin Lakes, NJ). Fresh stool samples and
stools preserved in Cary Blair transport media were cultured for bac-
terial enteropathogens using conventional microbiologic
techniques76,77. Enteropathogens were identified according to their
growth on differential and selective agar plates78. Stool specimens
were streaked onto MacConkey agar, Salmonella-Shigella agar (SS),
Hektoen Enteric agar (HE), thiosulfate citrate bile salt sucrose agar
(TCBS), andCampylobacterblood-free agarbase (CBF). All agar culture
plates were incubated at 37 °C for 24 h after inoculation with the
exemption of Campylobacter blood-free agar base plates that were
incubated at 42 °C for 48 h in microaerophilic conditions. Stool sam-
ples were also inoculated into selenite enrichment broth and peptone
water as sub-cultures and incubated at 37 °C for 18–20 h after inocu-
lation. After incubation, the selenite enrichment broth was streaked
onto HE agar to assess for Shigella spp. and the peptone water was
streaked in the TCBS agar to screen for Vibrio spp. and both were
incubated at 37 °C for 24h. Five lactose fermenting colonies with
morphology compatible with E. coli were selected from each Mac-
Conkey agar plate and preserved for polymerase chain reaction
detection of pathogenic E. coli as described below. Other colonies with
morphology and characteristics of enteropathogens seen on the
MacConkey, SS, HE, and TCBS agars were inoculated in motility indole
ornithine agar (MIO), Kliger iron agar (KIA), lysine iron agar (LIA), and
Simmons citrate (CIT) and incubated at 37 °C for 24 h. After incuba-
tion, enteropathogen differentiationwas performed according to their
growth characteristics in the different agars and differential bio-
chemical reactions78. Colonies growingon theCBF agarwere evaluated
with oxidase, catalase, and gram stain testing to differentiate Campy-
lobacter colonies. Colonies with morphology and biochemical profile
consistent with Shigella were confirmed by agglutination with
serotype-specific antisera.

After biochemical identification, all the lactose fermenting and
enteropathogens colonies identified were shipped to NAMRU-6 in
Lima for quality control and further workup. For transportation,
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lactose fermenting colonies were inoculated again in MacConkey agar
and Campylobacter colonies were inoculated in CBF agar, all were
incubated at 37 °C for 24 h, and isolated colonies resuspended in
cryovials with trypticase soy broth with 15% glycerol, frozen at −70 °C,
and shipped overnight on dry ice. The colonies identified as Salmo-
nella spp., Shigella, Aeromonas spp., Plesiomonas spp., and Vibrio spp.
were inoculated in vials containing trypticase soy agar, incubated at
37 °C for 24 h, and shipped overnight at 4–8 °C.

All identified enteropathogen colonies were inoculated on
Mueller-Hinton (MH) agar to perform antibiotic susceptibility testing
using the Kirby Bauer disk diffusion method according to the Clinical
and Laboratory Standards Institute (CLSI) guidelines79. Antibiotic sus-
ceptibility testing was performed with 17 antibiotic discs (amoxicillin-
clavulanate, ampicillin, azithromycin, ceftriaxone, chloramphenicol,
cephalothin, cefepime, ciprofloxacin, rifaximin, amikacin, gentamicin,
imipenem, tetracycline, trimethoprim-sulfamethoxazole, ticarcillin,
ticarcillin/clavulanate, and furazolidone). Colonies were suspended in
sterile saline and turbidity adjusted to the 0.5 McFarland standard
before plating onto MH agar using the lawn streak technique. Anti-
biotic discs were added with proper spacing between and plates were
incubated at 37 °C for 18–20 h after inoculation. Zones of inhibition
were measured and recorded as the diameter of growth inhibition,
with interpretation of susceptibility or resistance determined using
CLSI M100 published breakpoints. It is important to note that cur-
rently there is no established CLSI breakpoint for determining the
azithromycin resistance in E. coli. However, azithromycin has been
found to be highly effective and is frequently used in treating diarrheal
infections caused by Gram-negative pathogens, including diarrhea-
genic E. coli. In this study, we defined azithromycin resistance as per80,
where the minimum inhibitory concentration of azithromycin was
determined in accordance with CLSI guidelines using the agar dilution
method on all isolates with halo diameter <15mm.

PCR detection of pathogenic E. coli. Five lactose-positive colonies
were selected randomly from each participant stool culture plate and
shipped frozen at −70 °C to NAMRU-6 in Lima for quality control and
real-time florescence-based multiplex PCR for the detection of the
currently recognized classes of diarrheagenic E. coli as previously
described81,82.

Frozen stocks of isolated colonies were restreaked onto Mac-
Conkey agar and incubated at 37 °C for 18–20h. For DNA extraction, a
single lactose-positive colony was carefully removed from the Mac-
Conkey agar plate using a sterile toothpick to avoid agar contamination
andplaced individually into a vial with 100μl of sterilemolecular-grade
water. DNA was extracted by boiling at 100 °C for 5min, then 5min on
ice, followed by centrifugation at 14,000 rpm for 10min at 4 °C.

Primers were designed as previously described82 to detect eight
different virulence genes simultaneously in a single reaction, including
aggR for enteroaggregative E. coli (EAEC), ST1a/ST1b, and LT for enter-
otoxigenic E. coli (ETEC), eaeA for enteropathogenic E. coli (EPEC), stx1
andstx2 for Shiga toxin-producing E. coli (STEC), ipaH for enteroinvasive
E. coli (EIEC), and daaD for diffusely adherent E. coli (DAEC)82. The pri-
mers were designed so that amplicons had differential melting tem-
peratures (TmS) ranging from 77 to 95 °C. The primers were diluted
with TE buffer pH: 8.0 to obtain a 100μM stock concentration,
then further diluted to 25μM working concentration with molecular
grade water.

Two microliters of the DNA extraction lysate was used as a tem-
plate added with 23μl PCR master mix for a final reaction volume of
25μl including Phusion High Fidelity buffer (Finnzyme OY, Espoo,
Finland) and 0.5 U Phusion polymerase with 200μM deoxynucleoside
triphosphates and4mMMgCl2 (ThermoScientific,Waltham,MA). Sybr
green I was added as recommended by the manufacturer (Cambrex
Bio Science, Rockland,ME). The qPCRwas performedonRotor-GeneQ
PCR thermocycler with software version 1.7 (Qiagen, Germantown

MD). Cycling conditions were 98 °C for 50 s, 60 °C for 20 s, 72 °C for
30 s, and 75 °C for 1 s over a total of 25 cycles, after which melting
curves were determined with a ramp speed of 2.5 °C/s reading each
0.2 °C increments between 73 and 95 °C82. Melting peaks were calcu-
lated by the software to allow the interpretation of reactivity for the
different virulence factor genes. Reference strains for each pathogenic
E. coli were included as positive controls in the reaction.

RT-PCR for norovirus detection. Stool specimens were transported in
portable coolers on ice packs to the field laboratory, aliquoted, and
were stored at –80 °C until they were shipped in batches on dry ice to
the NAMRU-6 laboratory in Lima for testing. Specimens were treated
as described previously83 with some modifications. In brief, fecal
samples were diluted 10% in 1× phosphate-buffered saline, vortexed,
and centrifuged at 5943 × g for 10min at 4 °C84. Total RNA was
extracted from stool-diluted samples using the QIAmp Viral RNA mini
kit (Qiagen, Valencia, California) as described by the manufacturer.
RNA was eluted with 60 µL of 0.01% of RNAse inhibitor (Qiagen) in
DEPC Treated Water (Invitrogen, Life Technologies, Waltham, MA).
RNA samples were stored at −80 °C until use. Norovirus detection was
performed using a Duplex genogroup-specific real-time reverse-
transcription polymerase chain reaction (qRT-PCR) developed and
described by the National Calicivirus Laboratory at the Centers for
Disease Control and Prevention in a 7500 FAST real-time platform
(Applied Biosystems, Waltham, MA)85,86. RT-PCR was performed at
45 °C for 10min and 95 °C for 10min followed by 45 cycles of 15 sec-
onds at 95 °C and 1min at 60 °C using primers and probes from pre-
vious assays87,88. A sample was considered positive for norovirus GI
when the calculated cycle threshold (Ct) was less than or equal to 37
cycles and considered positive for GII when the Ct was less than or
equal to 39 cycles. Test results were only considered valid when all
quality control positive reactions were below Ct cutoff and did not
exhibit fluorescence above the threshold for the negative template
control reactions.

Metagenomic DNA extraction and sequencing
Metagenomic DNA (mgDNA) was extracted from 300–400mg stool
samples using the phenol-chloroform repeated bead-beating protocol
as described previously21. The extractedmgDNAwas diluted to 0.5 ng/
μL and sequencing libraries were prepared using a modified Nextera
protocol89. The libraries were purified using the Agencourt AMPure XP
system (Beckman Coulter) and quantified using the Quant-iT Pico-
Green dsDNA assay (Invitrogen). For each sequencing lane, 10 nM of
approximately 96 samples were pooled three independent times.
These pools were quantified using the Qubit® dsDNA BR Assay and
combined in an equimolar fashion. Samples were submitted for
2x150bp paired-end sequencing on an Illumina NextSeq-High Output
platform at The Edison Family Center for Genome Sciences & Systems
Biology at Washington University in St. Louis.

Metagenome profiling
Metagenomics raw reads were processed to remove Illumina adapter/
index sequences and low-quality reads using Trimmomatic (v0.36)90
with the following parameters ILLUMINACLIP:NexteraPE-PE.fa:2:30:
10:1:true; SLIDINGWINDOW:4:15; LEADING:10 TRAILING:10; MINLEN:
60. The removal of human reads contaminants was performed using
deconseq (v0.4.3)91. Post-cleaning, 710 samples with >3 million reads
were used in downstream analyses. The taxonomic composition was
determined using Metaphlan217. Taxa with <0.01% relative abundance
in >90% of samples were removed, resulting in 143 species included in
downstream comparative analyses.

Functional metagenomics
We constructed 21 small-insert (2–5 kb) functional metagenomic
libraries, which were screened against 17 antibiotics (Supplementary
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Data 1) based on our previously published protocols19–23. The experi-
mental protocol is described below:

Library preparation
The mgDNA extracted from 10 randomly selected stool samples were
pooled together for the construction of each individual functional
metagenomic library. The pooled mgDNA was sheared with Covaris
E220 sonicator following the manufacturer’s recommended settings
for a target size of 3 kb (DNAmass: 2–20 µg ofmgDNA diluted in 200ul
of Buffer EB, intensity: 0.1, duty cycle: 20%, cycles per burst: 1000,
treatment time: 600 sec). The shearedmgDNAwas size-selectedby gel-
electrophoresis (1% agarose, 0.5× Tris-borate-EDTA, GelGreen dye
(Biotium), 70 V for 130min). The band covering 2–5 kb fragment size
was excised, then mgDNA fragments were recovered using the QIA-
quick gel extraction kit (Qiagen). The size-selected mgDNA fragments
were end-repaired with the END-ItTM DNA End Repair kit (Epicenter)
and purified with the QIAquick PCR purification kit (Qiagen). The end-
repaired mgDNA was quantified with the Qubit HS fluorometer assay
kit (Invitrogen) and concentrated using a vacuum concentrator
(SpeedVac®) to a final volume of ~10 µl. The mgDNA fragments were
then ligated into the pZE21-MCS-1 vector at the BamHI site. Lineariza-
tion of the pZE21 vector was performed by inverse PCR using the fol-
lowing reaction conditions: (1) Mix 10 µl of 10× reaction buffer, 1.5 µl of
10mMdNTPmix, 1 µl ofMgSO4, 1 µl of 100pg/µl circular pZE21 plasmid
vector, 0.75 µl forward primers (5’ GACGGTATCGATAAGCTTGAT 3’),
0.75 µl reverse primers (5’ GACCTCGAGGGGGGG 3’), 0.4 µl blunt-end
HFDNApolymerase and 29.6 µl of nuclease-freewater to a final volume
of 50 µl. (2) PCR settings: 95 °C for 5min, then 35 cycles of [95 °C for
45 sec, 55 °C for 45 sec, 72 °C for 2.5min], then 72 °C for 5min. The
linearized pZE21 plasmid vector was size-selected (~2200bp) using gel-
electrophoresis, purified with the QIAquick PCR purification kit (Qia-
gen), and then dephosphorylated with calf-intestinal alkaline phos-
phatase (CIP, New England BioLabs) by adding 40 µl of gel-purified
DNA, 5 µl of CIP (10U/µl), and 5 µl of the 10× reaction buffer. The 50 µl
reaction was incubated overnight at 37 °C before the CIP was heat-
inactivated by incubating the reaction mix at 70 °C for 15min. The
ligated plasmid DNA was then purified using the QIAquick PCR pur-
ification kit (Qiagen) dialyzed with cellulose membrane (Millipore,
VSWP09025) for 30min, and then electroporated into E. coli MegaX
DH10B (Invitrogen) following the manufacturer’s instructions. After
transformation, cells were recovered in 1ml of recovery medium
(Invitrogen) for 1 h at 37 °C. The library titers were determined by
plating 0.1 µl and 0.01 µl of recovered cells onto Luria-Broth (LB) agar
plates containing 50 µg/ml kanamycin as previously described20. The
remainder of recovered cells were grown overnight in 50ml of LB
broth containing 50 µg/ml kanamycin (LB-Kan). The culture was then
centrifuged and resuspended in 15ml of LB-Kan broth containing 15%
glycerol and stored at −80 °C for subsequent screening. Functional
screening of antibiotic resistance: Eachmetagenomic expression library
was screenedonMueller-Hinton agarwith 50 µg/ml kanamycin andone
of the 17 antibiotics at concentration listed in Supplementary Data 1.
Before plating each library on antibiotic-containing growth media, the
concentration of each library was adjusted such that 100 µl of library
freezer stock contained at least 10× the total number of unique clones
as determined at the time of library creation. To adjust the con-
centration, the freezer stock solution was either diluted with MH-Kan
or centrifuged and reconstituted again in the appropriate volume for
plating. The antibiotic selection plates were incubated for 24 h at 37 °C
to allow growth of antibiotic-resistant clones. Additionally, for each
antibiotic selection, a negative control plate of E. coli MegaX DH10B
strain transformedwith unmodifiedpZE21 (i.e., without ametagenomic
insert) was plated to ensure that the concentration of antibiotic used
entirely inhibited the growth of clones containing unmodified pZE21.
The surviving colonies from each antibiotic selectionwere collected by

adding 750 µl of LB-Kan with 15% glycerol, and colonies were scraped
with an L-shaped spreader. The slurry of antibiotic-resistant clones
removed from the surface of the plate was stored at −80 °C before
sequencing them with Illumina NextSeq platform.

Sequencing, assembly, and annotation of functionally-selected
resistance determinants
The plasmidDNA containing antibiotic-resistantmgDNA fragmentswas
extracted from functionally-selected clones using the QIAprep Spin
Miniprep kit (Qiagen), and prepared for sequencing with a Nextera
protocol, as described above. The samples were submitted for
sequencing using an Illumina NextSeq platform (2 × 151 bp paired-end
reads). Reads from each antibiotic selection were assembled into con-
tigs using PARFuMS19, a tool specifically designed for high-throughput
assembly of resistance-conferring DNA fragments from functional
selections. Selections were excluded from analysis if: (1) the number of
contigs assembledwas 10 timesmore than the total number of colonies;
or (2) >200 contigswere assembled. Contigswere alsofiltered based on
length (>500bp). A total of 7020 contigs were obtained, and 16,334
open reading frames (ORF) were predicted in these contigs using the
gene-finding algorithm Prodigal90. These ORFs were then annotated
using an in-house pipeline called resAnnotator.py, which follows a
hierarchical approach: (1) ORFs are searched against BLAST-based ARG
databases (CARD46, ResFinder46, and AMRFinder-Prot47) with high
percent-identity (>95%) and coverage (>95%); and (2) the remaining
ORFs are annotated using HMM-based ARG databases (Resfams91,
AMRFinder-fam47). Overall, 1233 unique ARGs were identified.

Resistome profiling of metagenomics samples
The relative abundance of ARGs in the metagenomics samples was
calculated using ShortBRED18(v0.9.4). First, we built a high-precision
ARG-specific markers database from 7,921 antibiotic resistance pro-
teins that were used as proteins of interest for identification of marker
families using ‘shortbred_identify.py’ with the following non-default
parameters: --clustid 0.95 --ref Uniref9092. The antibiotic resistance
protein sequences include sequences from the CARD database46, the
NCBI-AMR database47, and antibiotic resistance proteins identified
using functional metagenomics in this cohort, and previous
studies19,21–23,93–97. In total, we generated a comprehensive set of mar-
kers database consisting of 6,585 unique marker sequences repre-
senting 2,331 AMR gene families. These AMR gene families were then
manually curated, and entries with the following criteria were removed
from analysis consideration because they would not be confidently
expected to provide resistance based solely on a short-read marker
(e.g., when that gene would require other components to provide
phenotypic resistance, or when short-read markers would not distin-
guish between susceptible vs. resistant versions of an antibiotic target):
(1) Genes associated with global gene regulators, two-component

system proteins, and signaling mediators (e.g., blaZ, vanS-vanR,
mecI, mepR, gadW, marR);

(2) Genes encoding subunits that are part of multiple efflux pumps
(e.g., tolC, oprM, opmD);

(3) Resistance viamutation in genes (e.g., resistance to antifolate drugs
viamutations in dhfr, resistance to rifamycin viamutation in rpoB);

(4) Genes conferring resistance by modifying cell wall charge
(e.g., mprF);

(5) Genes that reduce permeability (e.g., omp38, tmrB) or confer
resistance through overexpression (e.g., Thymidylate synthase);
and

(6) General efflux pumps that came through functional selections
(e.g., MFS-type, ABC-type)

The relative abundance of AMR gene families was quantified
by mapping reads to the filtered set of marker sequences using
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‘shortbred_quantify.py’. ShortBRED hits were filtered-out if they had
counts lower than2, or amean readsper kilobasemillion (RPKM) lower
than 0.001.

Bacterial DNA isolation, sequencing, and assembly
The E. coli isolates stored at −80 °C in 15% glycerol were inoculated in
1.5ml tryptic soy broth and were grown overnight at 37 °C with shak-
ing. Genomic DNA was extracted using the Biostic Bactermia DNA
isolation kit as per the manufacturer’s protocol. DNA concentration
was quantified using the Qubit fluorometer and stored at −20 °C. Iso-
late sequencing libraries were prepared using the Nextera protocol89,
and were sequenced on the Illumina NextSeq platform with 2 × 150
paired-end reads. Raw sequencing reads were binned by index
sequences, quality filtered using Trimmomatic(v0.36)98 and human
contaminants were removed by DeconSeq (v0.4.3)99. Processed reads
were assembled into draft genomes using SPAdes (v3.11.0)100 with the
following parameters: spades.py -k 21,33,55,77 --careful. Assembly
quality was assessed using CheckM101 and the following inclusion cri-
teria were used for downstream analysis: >90% completeness, <5%
contamination, and <500 contigs longer than 500 bp.

Genomic analysis of E. coli isolates
The assemblies of 189 E.coli isolates and 40 publicly available E.coli
reference genomes were annotated using Prokka (v1.12)102 with default
parameters. Multilocus sequence types and serotype were determined
using MLST (https://github.com/tseemann/mlst) and SerotypeFinder103.

In silico detection of antibiotic resistance and virulence genes in
the isolate genomes was performed using the in-house pipeline
resAnnotator.py, which sequentially annotates ORFs by searching
against the given Blast- and HMM-based databases. For antibiotic
resistancegenes, we screened against the followingdatabases in order:
Resfinder104, NCBI-AMR47, CARD46, and Resfams91. For virulence gene
identification, VirulenceFinder105,106 and VFDB107 were used. Mobile
genetic elements in the isolate genomes were predicted by
MGEFinder54. Average nucleotide identities among isolates were
computed using pyani (https://github.com/widdowquinn/pyani). The
pangenome analysis was performed using Roary49, with core-genome
alignments created from assembled contigs of all E. coli isolates
(189 sequenced and 40 published reference genomes). The reference
genome of E. marmotae was also included as an outgroup. The
maximum-likelihood core-genome phylogenetic tree was constructed
using RAXML (v8.2.11)50 with the following parameters: -mGTRGAMMA
-f a -N 1000 -x 25418 and visualized using iTOL108.

Statistical analysis
Identification of covariates. To identify the metadata variables that
significantly affected the taxonomic profile, functional profile, and
resistomeprofile, we calculated the total variance contribution of each
variable using PERMANOVA with repeated measures, as described
previously25. To account for repeated measurement in metadata vari-
ables that change over time (e.g., stool consistency, sample type,
pathogen presence), permutations were limited to within the subjects.
Meanwhile, variables thatwere constant across samples from the same
subject (e.g., age, sex, travel history, lodging, country of origin) were
first permuted across subjects, with samples re-labeled with the vari-
able from their permuted subject. The significance value for metadata
variables was determined using 5,000 permutations and p values that
were FDR corrected for multiple-hypothesis testing. The metadata
variables that showed significant variation among these profiles were
included in the models as covariates.

Longitudinal changes in alpha- and beta-diversity. To model the
effect of length of travel and diarrhea on gut microbial and AR gene
diversity, a linearmixed effectmodel (LMM) (formodeling continuous
response variables, e.g., Shannon index) or generalized linear mixed

effectmodel (GLMM)with Poisson family (formodeling count data e.g.
richness) was fit by maximum-likelihood using lmer or glmer function
in R, respectively. Thesemodels include regression on alpha diversity,
beta-diversity, and cumulative change in abundance measures against
diarrhea and time while also adjusting for the effects of age, sex,
region, and inter-individual variability by specifying subjects as the
random effects. Pseudo-R2 was determined using r.squaredGLMM
function in the MuMin package. Post hoc pairwise comparison
between different Sample Type (e.g., DiarrheaTD vs Non-diarrhea
PostTD) was performed on fitted models using emmeans package and
P values were corrected for multiple hypotheses using
Benjamini–Hochberg method (FDR).

Microbial features association analysis. To identify microbial fea-
tures (taxa or ARGs) associated with diarrhea, we performed multi-
variable association analysis using MaAsLin227 that accounts for
multiple covariates and repeated measures. Briefly, Masslin2, first
applies an appropriate transformation/normalization method: arcsine
square-root transformation for taxonomic profile and log transfor-
mation with half the minimum relative abundance as a pseudo count.
Then, the transformed abundances of each feature were fit with the
following linear mixed-effects model:

microbial f eature abundances ðtaxa or ARgenesÞ ∼ Sample type

+Age+ Sex +Region+AbxUse+Time in PeruðdaysÞ+ 1∣SubjectsÞ

where each microbial feature was modeled as a function of diarrhea
while adjusting for the effect of metadata variables (significant cov-
ariates that came fromPERMANOVA analysis) as well as accounting for
inter-individual variability by specifying the subjects as random
effects. Further, p values of each feature were corrected for multiple-
hypothesis testing using Benjamini–Hochberg method with
FDR <0.25.

Microbiome network analysis
We inferred two unsupervised co-occurrence networks from diarrhea
(case) andnon-diarrhea (control) samples at the species-level using the
SparCC44 algorithm which calculates the correlations between the
microbial species while taking into account the sparsity and inherent
compositionality in the microbe relative abundance data. To account
for differences between the number of diarrheal and non-diarrheal
samples, we took subset of samples to construct co-occurrence net-
works. For the diarrhea network, only the first diarrhea samples per
individual were considered, whereas non-diarrheal samples that were
collected within the first two weeks of stay and were not flanked by a
diarrheal episode were included in the non-diarrhea network. For the
given diarrhea and non-diarrhea datasets, SparCC was used with
default parameters to calculate the correlations among species, and
then the “MakeBootStrap” command was applied to generate 100
bootstrap tables, which were again used to calculate the SparCC cor-
relations. Finally, the bootstrapped correlations were used with the
“PseudoPvals.py” command to generate two-tailed p values from the
true table. The correlation values with p values <0.05 were retained.
We then compared the two co-occurrence networks using NetShift45

which quantifies the changes in the interactions of the individual node
to identify the “driver taxa”. The key parameters for identifying the
driver taxa were the NESH score, Jacard index and delta betweenness
centrality. The co-occurrence networks were drawn using the igraph
package in R.

Microbiome shift events
Microbiome “shift”25 events were defined as when the Bray–Curtis
dissimilarity index between two consecutive samples from a single
individual wasmore likely to have come from the distribution of the
Bray–Curtis dissimilarity index derived from samples of different
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individuals. Based on this definition, we first obtained the dis-
tribution of the Bray–Curtis dissimilarity index between samples
from different individuals of the HT cohort and the Bray–Curtis
dissimilarity index between samples from the same individuals of
the HT cohort. The point at which the inter-individual dissimilarity
estimate exceeded the intra-individual dissimilarity estimate was
chosen as the threshold to define the “microbiome shift” event
(Bray–Curtis dissimilarity: 0.52).

Machine learning classification model
To distinguish diarrheal from non-diarrhea samples based on taxo-
nomic composition, we built machine learning classification models
using SIAMCAT43, an ML-based tool box developed specifically for
metagenomics studies109. The SIAMCAT43 workflow consists of nor-
malization of taxonomic features, splitting the datasets using cross-
validation schemes (fivefolds), trainingwithdifferentmachine learning
models (LASSO logistic regression, Random Forest, and Elastic Net),
and evaluating the performance of the models using area under the
receiver operating characteristic curve.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data from shotgun metagenomics, isolates, and functional meta-
genomics sequencing are available from the NCBI SRA under BioPro-
ject IDPRJNA698223. The source data underlyingmain text figures and
supplementary figures are provided as a Source Data file. Source data
are provided with this paper.

Code availability
The assembly (PARFuMS[https://zenodo.org/badge/latestdoi/
89020730]) and annotation (resAnnotator[https://zenodo.org/
badge/latestdoi/331011517]) pipelines used in functional metage-
nomics are available on github at https://github.com/dantaslab.
Analysis scripts used here are available from the authors upon
reasonable request.
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