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Longitudinal dynamics of farmer and 
livestock nasal and faecal microbiomes  
and resistomes

Bejan Mahmud    1,12, Rhiannon C. Vargas    1,12, Kimberley V. Sukhum1,2, 
Sanket Patel1,2, James Liao1,2, Lindsey R. Hall    1, Akhil Kesaraju1, Thao Le3, 
Terrie Kitchner4, Erik Kronholm5, Kyle Koshalek6, Casper G. Bendixsen    6, 
Jeffrey J. VanWormer5, Sanjay K. Shukla    4,7,8  & Gautam Dantas    1,2,9,10,11 

Globally, half a billion people are employed in animal agriculture and are 
directly exposed to the associated microorganisms. However, the extent to 
which such exposures affect resident human microbiomes is unclear.  
Here we conducted a longitudinal profiling of the nasal and faecal 
microbiomes of 66 dairy farmers and 166 dairy cows over a year-long period. 
We compare farmer microbiomes to those of 60 age-, sex- and  
ZIP code-matched people with no occupational exposures to farm animals 
(non-farmers). We show that farming is associated with microbiomes 
containing livestock-associated microbes; this is most apparent in the 
nasal bacterial community, with farmers harbouring a richer and more 
diverse nasal community than non-farmers. Similarly, in the gut microbial 
communities, we identify more shared microbial lineages between cows and 
farmers from the same farms. Additionally, we find that shared microbes are 
associated with antibiotic resistance genes. Overall, our study demonstrates 
t he i nt er connectedness of human and animal microbiomes.

A substantial fraction of the population in the United States, and glob-
ally, is involved in animal agriculture1,2, routinely coming into contact 
with livestock. As a consequence, farm workers are frequently exposed 
to microbes of farm and animal origins3,4, with documented instances 
of microbial acquisition by farmers in farm settings5,6. This microbial 
exposure is of importance for the health of farm residents. In some 
children, exposure to farm animals and associated microbes correlates 
with more rapid maturation of the gut microbiome7 and lower rates 

of asthma, atopy and allergies7–10; however, childhood exposure to 
livestock microbes has also been associated with stunted growth11. In 
adults, a positive association between asthma and exposure to farm 
animals is observed12,13, particularly in the absence of early-life farm 
exposure14–16. Long-term contact throughout a person’s life with farm 
animals is also associated with elevated risks of other respiratory 
disorders17,18 and blood cancers19,20, further highlighting the risks of 
occupational exposures on farmer health.
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four seasons (spring, P = 0.40; summer, P = 0.37; autumn, P = 0.081; 
Wilcoxon rank-sum test; Fig. 1a). However, the microbial richness was 
consistently higher in the cow nasal community relative to that of farm-
ers (Extended Data Fig. 1a). As expected, the nasal microbiomes of 
cows and non-farmers were compositionally distinct (P < 0.001, per-
mutational multivariate analysis of variance (PERMANOVA); Fig. 1b,c), 
with 83 differentially abundant microbial families (75 enriched in cows; 
Supplementary Table 2) and 154 differentially abundant genera (140 
enriched in cows; Supplementary Table 3) between the two hosts. 
Interestingly, the farmer nasal microbiome is compositionally distinct 
from the nasal communities of cows (P < 0.001, PERMANOVA) and 
non-farmers (P < 0.001, PERMANOVA), and occupies a composition-
ally intermediate state (Fig. 1b). Relative to the nasal microbiome of 
non-farmers, the farmer nasal microbiome overlapped with that of 
cows to a much larger extent (Fig. 1c). Indeed, the farmer communities 
had lower Bray–Curtis distances (that is, more compositionally similar) 
to the cow samples than the non-farmer communities did to the cow 
samples (Fig. 1d). The cow nasal microbiome was also compositionally 
more similar to the nasal communities of farmers from other farms 
than to the nasal microbiome of non-farmers residing within the same 
ZIP code (Fig. 1d), suggesting that there is a general dairy-farm effect 
on the nasal microbial community that extends beyond individual 
farms. Furthermore, 58 microbial families (57 enriched in farmers; 
Extended Data Fig. 2) and 79 genera (71 enriched in farmers; Fig. 1e) 
were differentially abundant between the farmer and non-farmer 
nasal microbiomes. Among the bacterial families overrepresented in 
farmers are Lactobacillaceae, Aerococcaceae and Enterococcaceae, 
all of which are associated with protection against mucosal inflamma-
tion and sinus infection36. Notably, of the taxa enriched in the farmer 
nasal communities, 56 families (98.2%) and 70 genera (98.6%) were also 
enriched in the cow nasal communities relative to the non-farmer nasal 
microbiome (Fig. 1e and Extended Data Fig. 2). Taken together, these 
data suggest that occupational exposures coincide with the restructur-
ing of the farmer nasal microbiome primarily through the acquisition 
of microbes enriched in the cow nasal community. It is important to 
note that although these overlaps in the nasal microbiome composi-
tions of cows and farmers could emerge from microbial transmission 
between the two mammalian hosts, it is also possible that a common 
environmental source underlies the microbial spread to both hosts. 
As such, the origins of the similarities between the nasal communities 
of cows and farmers remain to be elucidated in future investigations.

Farm-specific gut microbial signatures
We next investigated whether the nasal microbial acquisition in farmers 
affects the composition of their gut microbiomes. As with nasal micro-
biome profiling, we first used 16S rRNA gene sequencing to character-
ize the cow and human faecal community compositions. In contrast 
to the observed difference in nasal communities, cows persistently 
harboured a more diverse gut community than both human groups, 
and the farmer and non-farmer gut microbiomes did not differ from 
each other significantly in diversity or richness (Fig. 2a and Extended 
Data Fig. 1b). Compositionally, microbiomes cluster by the mammalian 
host type (that is, cow versus human): the primary axis of the principal 
coordinate analysis, which explains over half of the observed compo-
sitional variation, separates the cow and human samples (Fig. 2b and 
Supplementary Tables 4 and 5), suggesting that the mammalian host 
type is the predominant determinant of gut microbiome composition. 
Unlike the nasal microbiome, occupational exposure to livestock did 
not correlate significantly with the farmer gut microbiome taxonomic 
structure at the genus level (Extended Data Fig. 3a–d), and both farmer 
and non-farmer gut communities were equally dissimilar in their com-
positions to the gut community of cows (Extended Data Fig. 4a). These 
observations may be interpreted to suggest that either occupational 
exposures have no effects on the farmer gut microbiome or these 
effects are apparent only at higher taxonomic or functional resolutions. 

The exposure of farmers to livestock microbes is also important in 
the context of the growing antibiotic resistance crisis. The increasing 
demand for dietary animal protein sources has been met by an expan-
sive use of antibiotics in agriculture aimed at disease prevention and 
growth promotion of food animals21. Remarkably, 73% of the global 
antimicrobial use in 2017 was directed towards use in animals22. This 
abundant use of antibiotics has resulted in the selection for and enrich-
ment of antimicrobial-resistant organisms (AROs) in livestock23,24. The 
selection for antimicrobial resistance in farm animals is expected to 
grow even stronger, as the global antimicrobial usage in livestock is 
estimated to increase by 8% between 2020 and 203025. Farmers may 
thus be at an increasing risk of acquiring AROs of zoonotic origins26–29 
and may serve as subsequent vectors of dissemination of AROs and 
antibiotic resistance genes (ARGs) to other members of the commu-
nity30,31, highlighting the intimate connection between antibiotic use 
in agriculture and public health.

In addition to diet and pharmaceutical exposures (that is, anti-
biotics), human–animal interfaces are increasingly recognized for 
their capacity to impact the long-term dynamics of human microbi-
omes32. Such interfaces are particularly noteworthy within agricultural 
settings. As detailed above, occupational exposures associated with 
livestock farming are important for their direct implications on the 
health of half a billion people and their potential role in the spread of 
antimicrobial resistance. Despite this global public health importance, 
the effects of occupational exposures on the taxonomic and functional 
(that is, ARG) compositions of native microbiomes of farmers are not 
well understood. Although there is evidence for farming-associated 
microbiome signatures33–35, it is unclear how biogeographically distinct 
microbial communities (that is, colonizing different body habitats) are 
differentially affected by occupational exposures. This knowledge is 
critical for elucidating the mechanistic basis of the occupational health 
risks faced by farmers and assessing the contributions of commonplace 
farming practices towards global ARO dissemination.

Results
To address these gaps in knowledge, we conducted a large, longitudinal 
investigation of the resident microbial communities of dairy farmers 
and cows from 37 dairy farms located in central Wisconsin in the United 
States. Our investigation focused on nasal and gut microbiomes, as both 
microbial communities have important health implications but would 
be differentially exposed to the farm environment. To determine the 
occupational signatures of the farmer microbiomes, we also profiled 
the nasal and gut communities of an age-, sex- and ZIP code-matched 
human cohort with no occupational exposures to the farm environ-
ment (that is, non-farmers). In all, our year-long (13 months) sampling 
yielded 712 faecal (nfarmer = 171, nnon-farmer = 114, ncow = 427) and 726 nasal 
(nfarmer = 171, nnon-farmer = 137, ncow = 418) samples from 292 (nfarmer = 66, 
nnon-farmer = 60, ncow = 166) longitudinally sampled subjects (Supplemen-
tary Table 1), allowing an in-depth and multidimensional characteriza-
tion of the resident microbial communities.

Characterization of the farmer nasal microbiome
Occupational exposures shift the farmer nasal microbiome to be com-
positionally more similar to the nasal microbiome of dairy cows. Profil-
ing of nasal microbiome compositions using 16S rRNA gene sequencing 
showed that dairy farmers persistently harboured a more diverse nasal 
microbiome relative to non-farmers (Fig. 1a and Extended Data Fig. 1a). 
Similarly, exposure to pig-farm environments has been associated with 
diversification of pig-farmer nasal microbiomes34. Increased nasal 
microbial diversity is associated with reduced mucosal inflammation36 
and may thus play a role in the reported protective effects of livestock 
exposure against atopy and allergy9,10. The cow nasal microbiome was 
similarly more diverse relative to the non-farmer nasal community. 
Conversely, the Shannon diversity metrics of the cow and farmer nasal 
microbiomes did not differ significantly from each other in three of the 
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Fig. 1 | Farmer nasal microbiome comprises cow-associated microbes. 
a, Genus-level Shannon diversity of the cow, farmer and non-farmer nasal 
microbiomes across seasons. b, The average nasal microbiome composition  
of cows, farmers (farm.) and non-farmers (non-farm.) across seasons. Top 20 
genera by relative abundance are coloured. Sample numbers are as in a.  
c, Principal coordinate analysis (PCoA) of Bray–Curtis dissimilarities of the genus 
compositions of nasal samples. d, Average nasal Bray–Curtis distances of farmers 
and non-farmers to cows residing in the same or different collection sites. Beta 
diversity is based on genus compositions. e, Genera with significant (P < 0.05) 
differential abundances between farmer and non-farmer nasal microbiomes. 

For each genus, when significant, the corresponding coefficient in cows relative 
to non-farmers is also shown. Points denote mean coefficients, and whiskers 
correspond to standard error. Enrichment was tested using MaAsLin2 (Methods), 
with Benjamini–Hochberg correction for multiple hypotheses. Sample numbers 
are as in c. In a and d, the boxplots show the median (centre line), quartiles (box 
limits) and 1.5× interquartile range (whiskers). Dots correspond to individual 
samples. Half-violins show the data distribution. P values were calculated using 
the two-tailed Wilcoxon rank-sum test, with subsequent Benjamini–Hochberg 
correction for multiple hypotheses.
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We were prompted to test the latter possibility based on the reported 
lower rates of gastrointestinal distress (that is, diarrhoea, constipa-
tion and dyspepsia) among dairy farmers relative to non-farmers37. 
Accordingly, we employed shotgun metagenomic sequencing of the 
faecal samples, which enables microbial community profiling at the 
species, sub-species and functional levels. We shotgun-sequenced 
all 712 faecal samples, generating 22.7 Gb of paired-end sequencing 
data, and profiled the species and metabolic pathway compositions 
using MetaPhlAn 438 and HUMAnN 339, respectively. We found that the 
farmer and non-farmer gut microbiomes did indeed differ significantly 
in their compositions at the species level (Extended Data Fig. 3e–l). The 
differences between the gut communities of the two human groups 

also emerge at the level of individual taxa (Extended Data Fig. 5a,b). 
Namely, farmer guts were enriched in butyrate-producing Firmicutes 
(for example, Coprococcus eutactus and Roseburia faecis), the depletion 
of which is associated with diarrhoeal diseases40. Last, we observed 
differences in the metabolic capacities of the farmer and non-farmer 
guts; the farmer microbiomes were enriched in degradation pathways 
for simple sugars (for example, lactose and galactose), whereas the 
metabolic pathways for the degradation of complex sugars (for exam-
ple, starch and glycogen) were overrepresented in the non-farmer guts 
(Extended Data Fig. 5c). In all, these data suggest that occupational 
exposures impact the nasal and gut microbiomes of farmers to varying 
degrees, with the associated effects on the gut community being only 
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resolutions. a, Genus-level Shannon diversity of cow, farmer and non-farmer 
faecal microbiomes across seasons. The boxplots show the median (centre line), 
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apparent at higher taxonomic and functional resolution. We also note 
that, although exposure to the farm setting could underlie the reported 
occupational signatures, other factors (for example, diet) could also 
contribute towards the observed differences in the gut microbiomes 
of farmers and non-farmers.

To assess the extent of horizontal dissemination of microbes 
within dairy-farm settings, we used inStrain41 to investigate the 
co-occurrences of microbial sub-species (that is, lineages) in human 
and cow guts. We first assembled 15,005 metagenome-assembled 
genomes (MAGs), with 993 high- and 3,891 medium-quality assem-
blies. Dereplication then yielded a set of 978 representative MAGs 
that were used as references for microbial lineage tracking. We found 
an enrichment in the number of lineages present in farmers and cows 
relative to the lineages present in cows and non-farmers (P = 0.0027, 
permutational analysis; Fig. 2c). When looking only at farmer–cow 
pairs, the frequency of lineage sharing was substantially higher in 
subject pairs residing on the same farms (P < 2.2 × 10−16, permuta-
tional analysis; Fig. 2d), suggesting that cohabitation with livestock 
is the predominant driver of acquisition of livestock-associated 
microbial lineages. We note, however, that the presence of shared 
lineages can have aetiologies other than direct transfer (for example, 
a common environmental source), and future investigations are 
needed to establish the mechanisms underlying the co-occurrence 
of microbes in farmers and cows. The lineages co-occurring in both 
farmer and cow guts represent 11 genera, three of which (Prevotella, 
Holdemanella and Blautia) are overrepresented in the farmer gut 
relative to that of non-farmers (Extended Data Fig. 5a,b). Moreover, 
only six genera account for 94.9% of all lineage-sharing events: 
Bifidobacterium, Romboutsia, Treponema, Prevotella, RC9 and 
Turicibacter (Fig. 2e). Notably, all these genera were found to be 
enriched in both farmer and cow nasal microbiomes, relative to 
the nasal community of non-farmers (Fig. 1e). Put together, these 
data suggest that, although farmer nasal microbial acquisition of 
dairy-cow-associated microbes is not correlated with large-scale 
restructuring of farmer gut microbiome architecture, it is associ-
ated with intestinal harbouring of specific livestock-associated 
microbial lineages.

Functional screening of novel ARGs
To understand the scope of ARG sharing within a farm setting, we used 
the faecal shotgun metagenomic sequencing data to profile the gut 
antibiotic resistome compositions of cows, farmers and non-farmers. 
High-throughput resistome characterization relies on mapping of 
sequencing data to a reference ARG set. However, such reference 
datasets are biased towards human hosts42 and would thus under-
represent the resistome composition of non-human subjects (for 
example, cows). To address these shortcomings, we identified novel 
gut-resident ARGs (that is, not present in existing databases) using 
functional metagenomic selections, which enables the identification of 
functionally validated ARGs without reliance on sequence similarity to 
known genes43–47. We constructed 13 metagenomic libraries using stool 
samples representing every study participant (humans and cows) and 
screened them against a panel of 17 antimicrobials and combinations, 
including those commonly used in farm animals48 (Supplementary 
Table 6). Our screens yielded 2,049 unique ARGs, with 1,202 originating 
from libraries constructed using cow samples (Fig. 3a). These ARGs are 
underrepresented in current ARG databases (median 32.8% amino acid 
identity), but are mostly similar to proteins within the comprehensive 
NCBI non-redundant (nr) database (median 92.5% amino acid identity) 
(Fig. 3a). This suggests that, although the nucleic-acid sequences of the 
functionally screened ARGs have been described, they have not been 
previously annotated to confer antimicrobial resistance45. Notably, 
there is a disparity across mammalian hosts in how similar their ARGs 
are to known proteins, with cow ARGs being significantly underrep-
resented (median 84.8% amino acid identity) compared to those of 

human origin (median 98.8% amino acid identities for both farmer 
and non-farmers) (Fig. 3a). These observations provide further sup-
port to the human bias noted in ARG databases42 and demonstrate 
that this bias also exists in the most comprehensive, non-functional 
reference catalogues.

Profiling the cow gut resistome
We combined the 2,049 functionally screened ARGs with those present 
in the Comprehensive Antibiotic Resistance Database (CARD)49 and the 
NCBI antimicrobial resistance gene catalogue50. To this combined set, 
we also added 17,292 ARGs resulting from past functional selections 
on samples with diverse origins (preterm infants, soil, non-human 
primates)44–47, yielding, to our knowledge, the most extensive reference 
ARG set and enabling a more comprehensive resistome profiling. Using 
this dataset, we find a higher ARG burden (that is, relative abundance) 
in human guts than in cows (Fig. 3b and Extended Data Fig. 6). However, 
resistance determinants against lincosamide, phenicol, macrolide and 
tetracycline classes of antibiotics were overrepresented in the cow gut 
resistome relative to human resistomes (Fig. 3c). The cow resistome 
also had lower richness than the gut resistomes of both human groups 
(Fig. 3d). Mimicking the gut taxonomic profiles, the gut resistome 
compositions primarily separated by mammalian host type (cow versus 
human; Fig. 3e). Relative to the human gut resistome, the cow gut is 
enriched in 413 ARGs, conferring resistance to tetracycline, trimetho-
prim, glycopeptide and beta-lactam antibiotics, among other drug 
classes (Fig. 3f and Extended Data Fig. 7). We note that, of the ARGs 
enriched in the cow gut, 94.9% (392 of 413) were identified through 
our functional screens (Fig. 3f), emphasizing the value of functional 
metagenomics in enabling more comprehensive resistome profiling. 
To enable broader investigations of ARG burdens, particularly in under-
studied environments, we provide the full set of functionally selected 
ARGs (Methods).

Use of antimicrobials leads to the expected expansion in the rela-
tive abundance of ARGs conferring resistance to the treatment agent51. 
However, post-treatment increases in the levels of ARGs unrelated to 
the administered drug(s) are also commonly observed51,52, contribut-
ing towards the ongoing depletion of drug options available for the 
treatment of bacterial infections23. The enrichment of ARGs unrelated 
to the treatment agent is a consequence of co-selection of diverse ARGs 
carried by the same bacterial hosts45 and/or encoded within multidrug 
resistance gene clusters53. We investigated the instances of ARG linking 
within the cow gut, as this knowledge could guide more informed treat-
ment choices. We hypothesized that linked ARGs would be correlated 
in their relative abundances (RPKMs) across samples. We identified 
7,960 unique pairs of highly correlated (r > 0.7, P < 0.05) ARGs, and 
we found numerous examples of these linked genes encoded in close 
proximity (within ~1 kbp) to each other (Fig. 3g), providing further 
support for their capacity to undergo co-selection upon antibiotic 
challenge. Most commonly, sets of strongly correlated ARGs conferred 
resistance to combinations of trimethoprim, glycopeptide, tetracy-
cline and beta-lactam classes of antibiotics (Fig. 3h). Consequently, 
treatments with these drugs are predicted to have high probabilities 
of enrichment for collateral resistance mechanisms, whereas this 
predicted probability is relatively low for fosfomycins and quinolones, 
suggesting these as potentially more desirable treatment options for 
this cohort of dairy cows. Noteworthy among the set of linked ARGs is 
the pair of mef(En2) and lnu(AN2), conferring resistance to macrolide 
and lincosamide drug classes, respectively. Although the instances of 
linked genes conferring resistance to macrolides and lincosamides are 
relatively rare, with only six other such gene pairs found among the 
7,960 total, mef(En2) and lnu(AN2) were strongly correlated (r = 0.86, 
P < 1 × 10−15) in their relative abundances (Fig. 3g). Furthermore, the two 
contiguous genes were enriched in the cow gut relative to the human 
resistomes and were highly prevalent, present in 94.6% and 91.8% of 
all cow samples, respectively. The mef(En2)-lnu(AN2) pair has also 
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been reported to be carried by other domesticated animals (ducks54, 
pigs55 and dogs56), where it is encoded by distinct microbial taxa. This 
suggests that this pair might exist within a mobilizable cassette that 

enables its dissemination among diverse microbial and mammalian 
hosts. Indeed, the contig encoding the ARGs also includes a proximal 
gene with annotated mobilization function (Fig. 3g).
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of cows, farmers and non-farmers across seasons. The top 20 antibiotic 
classes by combined relative abundances (RPKMs) of corresponding ARGs are 
coloured. Sample numbers are provided in d. c, Antibiotic classes differentially 
represented (combined RPKMs of corresponding ARGs) in the cow gut resistome 
relative to that of humans. Whiskers correspond to s.e. Enrichment was tested 
using MaAsLin2 (Methods). d, Gut resistome richness in cows, farmers and 
non-farmers. e, Principal coordinate analysis of Bray–Curtis dissimilarities of 
gut ARG compositions. f, Piechart of the ARGs enriched in the cow gut relative to 
the human gut resistome. The inner circle depicts the distribution of antibiotic 
classes among the enriched genes. The outer ring indicates the database source 

of the ARG. FMG, functional metagenomics. g, Diamonds depict individual ARGs, 
and correlating genes are connected with lines, with corresponding Pearson 
correlation coefficients indicated. On the right, example contigs encoding the 
correlating ARGs are shown. ARGs are coloured by antibiotic class, as in f.  
h, Network of correlating ARGs. Nodes indicate antibiotic classes corresponding 
to the ARGs and are coloured as in f. Edges are proportional in size to the number 
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classes. In a and d, the boxplots show the median (centre line), quartiles (box 
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samples. Half-violins show the data distribution. P values were calculated using 
the two-tailed Wilcoxon rank-sum test, with subsequent Benjamini–Hochberg 
correction for multiple hypotheses.
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Profiling the farmer gut resistome
As previously stated, the mammalian host (cow versus human) was 
the predominant driver of gut resistome composition (Fig. 3e), with 
the farmer and non-farmer resistomes clustering together and being 
similarly distinct in their compositions from the makeup of the cow 
resistome (Extended Data Fig. 4b). Furthermore, the farmer and 
non-farmer resistomes did not differ significantly in the number of 
unique ARGs encoded (Fig. 3d), suggesting that occupational expo-
sure to farm animals does not result in a large-scale restructuring of 
the human gut resistome. As this mirrors the trends in gut taxonomic 
composition (Fig. 2a,b), we wondered whether the occupational sig-
natures of the gut resistome might similarly become apparent only at 
higher resolutions of analysis. With a view to assessing this potential, 
we first focused on the six genera that were enriched in the cow and 
farmer nasal communities and represented the vast majority of the 
microbial lineages co-occurring in both cow and farmer guts, that is, 
Bifidobacterium, Romboutsia, Treponema, Prevotella, RC9 and Turici-
bacter (Figs. 1 e and 2e). We hypothesized that the ARGs carried by these 
taxa within the cow gut would be overrepresented in farmers relative to 
those without routine exposure to cows. Our approach to identifying 
such ARGs was based on the expected correlation between the relative 
abundances of microbes and their encoded genes45. We identified 29 
ARGs whose relative abundances in the cow gut correlated significantly 
(ρ > 0.5, P < 0.05) with those of the six genera of interest (Fig. 4a), giving 
a set of candidate genes encoded by the members of these taxa. More 
than half of these genes (17 of 29) were found to be encoded within 
corresponding cow MAGs (Fig. 4a), providing further support to the 
ARGs being encoded by these genera. Notably, these 29 ARGs were 
seasonally overrepresented (P = 0.031, Wilcoxon rank-sum test) in 
the farmer guts relative to the non-farmer resistomes (Extended Data 
Fig. 8). Extending the analysis to all 11 genera constituting all shared 
microbial lineages (Fig. 2e) yielded a larger set of correlating ARGs (Sup-
plementary Table 7), which were similarly significantly overrepresented 
(P = 0.0040, Wilcoxon rank-sum test) in the farmer resistome relative to 
that of non-farmers (Fig. 4b). These data indicate that farmers acquire 
ARGs via occupational exposures and that this acquisition is mediated 
by microbial lineages circulating within the farm environment. In sup-
port of this, many of these ARGs were also found to be encoded by the 
farmer MAGs corresponding to the genera of interest (Fig. 4a). This is 
further illustrated by the example of two Bifidobacterium MAGs that 
both encoded six ARGs (all enriched in cows relative to humans) within 
highly similar genomic contexts (Fig. 4c); the MAGs in question were 
assembled from the samples of a cow and a farmer residing within the 
same farm, demonstrating the ARG dissemination through acquisition 
of microbial lineages.

Horizontally disseminating ARGs
We identified several examples of ARGs within conserved, putatively 
mobile cassettes present in otherwise distantly related MAGs of cow 
and farmer origins (Fig. 4d). ARGs can disseminate to new gut-resident 
bacterial hosts through mobile genetic elements (for example, trans-
posons and plasmids). We aimed to broadly investigate the distribution 
of mobile elements within the farm setting, with a particular interest in 
the elements shared between distinct microbes of cow and farmer ori-
gins, given their role in the dissemination of ARGs to diverse microbes 
upon acquisition by the mammalian host. Following an established 
protocol for identifying horizontally transferred regions in bacterial 
genomes57, we identified all near-identical DNA fragments (≥99% iden-
tity by BLAST) present in pairs of otherwise distantly related high- and 
medium-quality MAGs (<95% pairwise average nucleotide identity) 
from distinct origins (cow versus farmer) (Methods). We identified 
18,288 instances of such horizontally disseminating fragments, most 
commonly shared by members of the Lachnospiraceae, Bifidobacte-
riaceae, Bacteroidaceae and Acutalibacteraceae families (Fig. 4e). 
These horizontally disseminating regions were enriched in ARGs 

relative to the remainder of the microbial genomes (P = 7.32 × 10−8,  
χ2 test), indicating their associated role in ARG spread. Nonetheless, 
only 4.2% of such fragments encoded ARGs (Fig. 4e), suggesting that the 
role of these horizontally transferred elements is not limited to resist-
ance dissemination. Considering the ARG-encoding fragments, genes 
targeting tetracyclines, lincosamides and macrolides were the most 
common resistance elements (Fig. 4f), with these three drug classes 
also being significantly overrepresented in the cow gut resistome rela-
tive to that of humans (Fig. 3c). Of the instances of horizontal transfer 
of ARGs, 85.8% involve ARGs enriched in the cow gut, suggesting that, 
within the farm environment, the resistance spread is predominantly 
driven by cow-associated ARGs. The aforementioned mef(En2) and 
lnu(AN2) were among the most common horizontally disseminating 
ARGs and were frequently transferred together (Fig. 4e), providing 
further evidence for their genetic linkage and presence within a single, 
mobilizable cassette (Fig. 4d). As stated earlier, both mef(En2) and 
lnu(AN2) are enriched and highly prevalent in the cow gut (relative 
to the human gut) and have been found in the resistomes of other 
animals54–56. In the cow gut, the mef(En2)–lnu(AN2) cassette was found 
in microbes belonging to four microbial families, most commonly in 
Lachnospiraceae (57.1% of instances); the host range for this cassette 
was narrower within the farmer gut, with the gene pair found in three 
families and predominantly (83.3% of instances) carried by members 
of Bacteroidaceae (Fig. 4f). Furthermore, as determined through NCBI 
BLASTn (≥99% identity, ≥90% query coverage), the mef(En2)–lnu(AN2) 
cassette has also been identified in 42 isolates reported elsewhere 
(Supplementary Table 8), most (34 of 42) of human origins. Similar to 
our findings, the reported human isolates carrying this mobilizable 
cassette are predominantly within the family Bacteroidaceae (33 of 34)  
and genus Bacteroides (30 of 34), including clinical Bacteroides  
fragilis isolates from patient wound and blood samples58. These obser-
vations may be interpreted to suggest that Bacteroides spp. are the 
primary carriers of the mef(En2)–lnu(AN2) cassette in the environ-
ment and that, upon introduction into the cow gut, this gene pair is 
enriched through selection, resulting in expansion of its microbial 
host range59. Conversely, it might be suggested that the enrichment 
of the mobilizable fragment within the cow gut facilitates the broader 
dissemination of the genes, including acquisition by humans. The 
dissemination patterns of the mef(En2)–lnu(AN2) cassette identified 
via our metagenomic analyses highlight the interconnected nature 
of human and livestock resistomes, emphasizing the suitability of 
the One Health approach for better understanding the transmission 
dynamics of antibiotic resistance60.

Conclusion
In one of the largest studies of its kind, we have investigated the 
effects of exposure to the dairy-farm environment on the microbial 
communities of dairy farmers. We find that the occupational effects 
of farming on farmer microbiomes are based on the acquisition of 
livestock-associated bacterial lineages. This is most evident at the 
nasal level, with farmers harbouring a significantly more diverse nasal 
microbiome than non-farmers. Furthermore, in the farmer nasal micro-
biome, we find an enrichment of microbial taxa that have putative 
anti-inflammatory activity36 and may thus be implicated in the reported 
protective effects of farming against allergy and atopy7–10. Relative to 
the observed differences at the nasal level, the effects of farming on 
the gut microbiome only emerge at higher taxonomic and functional 
resolution. We observe an enrichment of taxa associated with protec-
tion from diarrhoeal diseases40, which is in line with the reported lower 
rates of gastrointestinal ailments among dairy farmers37. However, we 
emphasize that mechanistic elucidation of the impacts of identified 
microbial signatures on farmer health and disease was beyond the 
scope of this work.

Towards elucidating the occupational effects on the antimicro-
bial resistome, we used functional metagenomics to identify 2,049 
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functionally screened ARGs, most of which are novel and underrep-
resented in the available resistance gene databases. By combining 
the functionally screened ARGs from this and our previous studies 
with the existing ARG databases, we generated a large reference set 
of ARGs, which we provide here for future use by the research com-
munity. This combined set allowed us to find evidence for the transfer 
of cow-enriched ARGs by microbes shared between cows and farmers, 
and these ARGs were overrepresented in the farmer gut relative to that 
of non-farmers. Notably, we find examples of these transferred ARGs 
encoded within mobile genetic elements and identify these cassettes 
in human clinical isolates reported elsewhere, demonstrating the con-
nection between agriculture and public health. Finally, through our 
functional screens, we provide definitive evidence of human-origin 
bias in existing genomic databases, suggesting that the biological 
relevance of non-human resistomes may have remained obscured by 
the limitations of available reference sets.

In our profiling of the occupational impacts of livestock farming 
on human-resident microbiomes, we used age-, sex- and, importantly, 
ZIP code-matched non-farmers to account for the established role of 
these factors in shaping human microbial communities. Inclusion of 
cow samples further allowed us to interrogate which of the observed 
differences between the two human groups could be attributed to 
exposures to the farm environment, and which may arise from factors 
not explicitly measured in our study (for example, diet, medications). 
As such, how occupational exposures interact with other environmen-
tal factors to shape farmer microbiomes remains to be elucidated. 
Specifically, future studies are warranted to determine whether and 
how diet and antibiotics facilitate the acquisition, maintenance or 
amplification of farm- and livestock-associated microbes, as well as 
their ARGs. Ultimately, such a comprehensive understanding of how 
human–animal interfaces shape the resident human microbiomes 
could give rise to novel strategies for mitigating the risks of animal 
agriculture on farmers and broader public health.

Methods
Design and participants
Details on the overarching design of the base study are described else-
where37. Briefly, the Dairy Microbiome (DOME) Study used a prospec-
tive matched cohort design to examine seasonal microbiome changes 
in dairy-farm (and non-farm) workers and cows. The source population 
included residents in and near the Marshfield Epidemiologic Study 
Area (MESA) in central Wisconsin61. Participants included dairy-farm 
workers and a comparison group of non-farm individuals, matched on 
age, sex and residential ZIP code. All study procedures were approved 
by the Marshfield Clinic Institutional Review Board (SHU10117) and 
included written informed consent from all participants. Inclusion 
criteria for farmers were (1) active/living status in or adjacent to MESA 
Central, (2) confirmed dairy-farm worker (at least 6 h of daily dairy-farm 
activities and minimum of 20 h per week), (3) age 18 years and older, 
(4) assigned a Marshfield Clinic Health System (MCHS) Medical History 
Number, indicating they have an MCHS account and (5) conversational 
competence in English or, if Spanish speaking only, comfortable in 
enroling with the help of an English- and Spanish-speaking bilingual 
interpreter. Inclusion criteria for non-farmers were (1) active/liv-
ing status in or adjacent to MESA Central, (2) age 18 years and older,  
(3) has not lived or worked in a farm in the past three years, (4) no cur-
rent occupational exposure to a farm and engagement in any daily farm 
activities and (5) living at least 0.5 miles away from a dairy farm. For all 
study participants, the extents of farm exposure were assessed using a 
questionnaire provided during recruitment and screening.

Recruitment
Potential farm workers were identified after contacting known active 
farms in and near MESA. All farms were on the register of licensed 
dairy producers from Wisconsin’s Department of Agriculture, Trade 

and Consumer Protection. In all, we recruited farmers from 37 dairy 
farms, ranging in size from 24 to 1,700 milking cows (median = 110, 
mean = 195.5 ± 270.1). Person–time follow-up, or cohort entry, for 
individuals began on the day of informed consent. Contact informa-
tion for farm residences were extracted from MCHS administrative 
records. Residents of these farm addresses were contacted by letter 
and telephone to receive the study description/invitation, screen for 
eligibility criteria, and set up a study enrolment visit with eligible indi-
viduals. Study coordinators attempted to reach potential participants 
over a four-week timeframe, with up to four telephone attempts made 
after the invitation letter until the individual was reached. Respondents 
were able to request to opt out of future contacts for this study at any 
time. Age- and sex-matched non-farm, office-based workers were 
recruited from the same ZIP code and lived 0.5–1.0 mile away from 
the matched farmers. The study enrolment visit was scheduled with 
a trained research coordinator at an agreed-upon time and location. 
At the enrolment visit, written informed consent was obtained. Parti-
cipants were incentivized through monetary compensation at the 
completion of their study enrolment visit. Participants also consented 
to have their symptoms survey data linked to their stored medical/
dental Electronic Health Record data for study analyses.

Sample collection
All human faecal and nasal samples were collected by the study partici-
pants. To enable self-collections, all study participants were trained in 
proper sample-collection techniques by designated research coordina-
tors, emphasizing the importance of aseptic techniques and upholding 
the integrity of the samples. The study participants received sterile 
and sealed collection kits, which included collection swabs, collection 
tubes, gloves and written instructions to ensure technical consistency 
and sample integrity. Nasal samples from humans were collected using 
Copan ESwabs (Copan Diagnostics, catalogue no. 480C) by inserting 
one swab in each anterior nares and making one complete, clockwise 
turn along the inner nostrils. Nasal secretions and faecal samples from 
cows were collected either by research coordinators or by farmers, 
who, as before, were trained in proper sample collection techniques.  
Specifically, the collection of cow nasal samples involved using an 
ESwab to do one complete, clockwise turn of the swab two to three 
inches inside the nares in one of the nostrils. Swabs from the (human 
and cow) sample collections were inserted back into the Copan ESwab 
transport tubes. All nasal swabs were collected in duplicate. Faecal sam-
ples were collected in collection cups and aliquoted into 5-ml cryovials 
under aseptic conditions. Immediately upon collection, all samples 
were kept on ice for up to 12 h and subsequently stored at −80 °C until 
further processing. Our sampling took place between March 2019 and 
March 2020, spanning five seasons (that is, spring 2019 to spring 2020). 
However, due to the onset of the COVID-19 pandemic, we halted all 
sample collection efforts in March 2020, so our analyses of seasonal dif-
ferences between the subjects excluded the samples collected during 
spring 2020, given the incomplete sampling within this season. March 
2020 samples were included in enrichment analyses, where collection 
season was controlled for as a random effect, and MAG assembly, which 
was done at the subject level and was independent of season.

DNA extraction and quantification
Approximately 100 mg of frozen faecal material was collected using 
sterile spatulas in a biosafety cabinet, while exchanging gloves 
and cleaning the space with 10% bleach solution between samples. 
Metagenomic DNA was extracted from the faecal aliquot using the 
DNeasy Powersoil kit (QIAGEN, catalogue no. 47014). The kit proto-
col was used with a modification where samples were lysed using a 
Mini-Beadbeater 24 system (BioSpec Products, catalogue no. 112011) 
rather than a vortex adapter46,62,63. Metagenomic DNA was extracted 
from nasal ESwabs (Copan Diagnostics, catalogue no. 480C) by defrost-
ing samples on ice and subsequently processing the 1-ml Liquid Amies 
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preservation medium with the QiAamp DNA Blood Mini kit (QIAGEN,  
catalogue no. 51104). We quantified DNA concentration using  
Qubit fluorometer double-strand DNA (dsDNA) assays (Thermo Fisher 
Scientific, catalogue no. Q32851).

16S rRNA library preparation sequencing and processing
16S rRNA gene-sequencing libraries were created with 515F-806R 
barcoded primers that target the V4 region of the 16S rRNA gene64. 
Amplicons were pooled and sequenced on an Illumina MiSeq plat-
form to obtain 2 × 250-bp paired-end reads. Towards determining the 
minimum sequencing depths, we performed a rarefaction analysis on 
a representative subset of faecal (ncow = 41, nfarmer = 42, nnon-farmer = 42) 
and nasal (ncow = 42, nfarmer = 42, nnon-farmer = 42) samples, which involved 
subsampling in steps of 2,000 reads (starting at 2,000 reads) using 
seqtk (v.0.5.0; https://github.com/lh3/seqtk) and calculating genus 
richness at each subsampling depth. For each sample type, the target 
sequencing depth was defined as the subsampling step above which 
no significant increases in richness were identified (Extended Data 
Fig. 9). Only faecal (ncow = 368, nfarmer = 156, nnon-farmer = 105) and nasal 
(ncow = 393, nfarmer = 163, nnon-farmer = 120) samples sequenced to depths 
at or above the corresponding thresholds were included in the sub-
sequent analysis. For the included samples, no reads were discarded, 
even if the corresponding sequencing depths were higher than the 
calculated rarefaction thresholds. Illumina paired-end reads were 
demultiplexed by index, and samples were processed using DADA2 
(v.1.14.0)65, generating a table of amplicon sequence variants (ASVs). 
Taxonomic classification of ASVs was done using the SILVA database 
(v.138.1)66, and mitochondrial and chloroplast ASVs were manually 
removed. A set of kit-only, negative control samples (n = 70) were 
similarly sequenced and utilized to remove contaminants using the 
R package decontam (v.1.6.0, thresh = 0.5)67. Finally, we imposed a 
0.1% relative abundance threshold on the taxonomic abundance data. 
Taxonomic richness and Shannon diversity were calculated using the 
specnumber and diversity (index = ‘shannon’) functions, respectively, 
within the R package vegan (v.2.6.4)68. Bray–Curtis distances were 
calculated using the vegdist function (method = ‘bray’) within vegan 
as well. The National Parks Palettes R package (v.0.2; https://github.
com/kevinsblake/NatParksPalettes) was used for data visualization.

Short-read sequencing and processing
Given their relatively low microbial burden, nasal samples are particu-
larly susceptible to contamination with host DNA. Indeed, an average 
of 95.1% of reads from short-read (that is, shotgun) sequencing of a 
preliminary subset of nasal samples were of cow or human origins69. 
Given this inefficiency, whole metagenome sequencing was applied 
only to faecal samples, where the average share of read of host origin 
was only 0.12%. For each faecal sample, the extracted DNA was diluted 
to 0.5 ng μl−1 and subsequently used as the input for Illumina sequenc-
ing library preparation using the Nextera kit (Illumina, catalogue no. 
20060060)70. The libraries were purified using AMPure XP beads 
(Beckman Coulter, catalogue no. A63881), pooled, and sequenced on 
the NovaSeq 6000 platform (Illumina) to obtain 2 × 150-bp paired-end 
reads. As before the sequencing depths were informed through a  
rarefaction analysis involving a representative subset of faecal samples 
(ncow = 40, nfarmer = 20, nnon-farmer = 20). The samples were subsampled in 
steps of 500,000 reads (starting at 500,000 reads) using seqtk (v.0.5.0), 
and ARG richness was calculated for each step. For each subject type, 
the minimum sequencing depth was defined as the subsampling step 
above which no significant increases in resistome richness were identi-
fied (Extended Data Fig. 10); all 712 faecal samples were sequenced to 
depths at or above the corresponding thresholds. Raw sequencing files 
underwent adapter trimming and quality filtering using Trimmomatic 
(v.0.38; ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:1:true, SLIDINGWIN-
DOW:4:20, LEADING:10, TRAILING:10, MINLEN:60)71. Reads of human 
and cow origins were subsequently removed using DeconSeq (v.4.3; 

-dbs hsref38,cow)72. Finally, unpaired reads were removed using the 
repair.sh script within BBMap (v.38.82; sourceforge.net/projects/
bbmap/), yielding clean metagenomic reads to be used for succeed-
ing analyses. Community taxonomic profiling was accomplished via 
MetaPhlAn 438, with 0.1% relative abundance threshold. Taxonomic 
richness and Shannon diversity were calculated using the specnum-
ber and diversity (index = ‘shannon’) functions, respectively, within 
vegan. Bray–Curtis distances were calculated using the vegdist func-
tion (method = ‘bray’) within vegan as well. Assessment of the encoded 
microbial pathways was done using HUMAnN 339.

Assembly of MAGs
MAGs were generated at the subject level. To this end, for a given 
subject (cow or human), sequencing reads from all time points were 
combined into a single file before assembly. Assembled contigs were 
generated using MEGAHIT (v.1.1.4; --min-contig-len 1000)73, which were 
subsequently binned using MaxBin (v.2.2.7; -in_contig_length 1500)74, 
MetaBAT (v.2.11.2; --minContig 1500)75 and CONCOCT (v.1.1.0)76. We 
then used DAS Tool (v.1.1.4; --search_engine diamond, --score_thresh-
old 0.1)77 to generate an integrated and optimized set of bins for each 
subject. This resulted in a total of 15,005 MAGs across all subjects, with 
993 high-quality (completeness > 90%, contamination < 5%, strain 
heterogeneity = 0%) and 3,891 medium-quality (completeness > 50%, 
contamination < 10%,) MAGs, as assessed with CheckM (v.1.1.3)78.  
Taxonomic classification of the MAGs was done using GTDB-Tk 
(v.1.7.0)79. Annotation of open reading frames (ORFs) was done using 
Bakta (v.1.5.1; --min-contig-length 200)80.

Microbial lineage sharing
We used inStrain (v.1.5.7)41 to determine instances of microbial lineage 
sharing between cows and humans. To this end, we first dereplicated 
the assembled MAGs using dRep (v.3.2.2; -sa 0.98, -nc 0.1)81, resulting 
in a set of 1,105 MAGs (354 high-quality, 624 medium-quality). These 
MAGs were then used as representative genomes for aligning sample 
reads. Due to the large memory requirements of inStrain, lineage track-
ing was completed in two steps. First, we determined the presence of 
each MAG in all samples using inStrain Profile (breadth > 50%). Next, 
for each MAG, we ran inStrain Compare only with samples where the 
MAG was present. Co-occurrence of microbial lineages in sample pairs 
was defined as popANI ≥99.5% and percent genome compared ≥50%.

Functional ARG screening
We generated functional metagenomics libraries using a previously 
described protocol43, with the following modifications. Extracted 
metagenomic DNA from the latest stool sample from each unique study 
subject (cow and human, n = 283) was pooled in sets of ~20, yielding 13 
pools; importantly, samples were pooled within subject groups (cows, 
farmers and non-farmers), resulting in eight cow, three farmer and two 
non-farmer pools. Pooled DNA was diluted to 25–100 ng μl−1 in 200 μl 
Buffer EB and subsequently sheared using the Covaris E220 sonica-
tor set to the following parameters: bath at 19–21 °C, 20% duty cycle, 
intensity of 0.1, 1,000 cycles per burst, and treatment time of 600 s. 
Upon shearing, the DNA was purified using the QIAquick PCR purifica-
tion kit (QIAGEN, catalogue no. 28104) and eluted in 40 μl of Buffer EB. 
Fragments 2–5 kb in size were then isolated in the BluePippin system 
(Sage Science) using the 0.75% agarose dye-free gel cassette as well as 
0.75% agarose, 1–6 kb, marker S1 (target I ph, mA = 0.60). Size-selected 
fragments were end-repaired using the End-It DNA End-Repair Kit 
(Biosearch Technologies, catalogue no. ER0720), purified using the 
QIAquick PCR purification kit (QIAGEN, catalogue no. 28104), and 
ligated into the pZE21-MCS-1 vector via the Fast-Link DNA Ligation kit 
(Lucigen, catalogue no. LK0750H) at a 5:1 insert-to-vector ratio. Ahead 
of ligation, pZE21 was linearized through HincII digestion, dephospho-
rylated using rSAP (New England Biolabs, catalogue no. M0371S) and 
purified through gel extraction. The ligated product was purified by 
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dialysis with a 0.025-μm cellulose membrane (Millipore Sigma, cata-
logue no. VSWP02500) and electroporated into the E. cloni 10-G ELITE 
cells (Lucigen, catalogue no. 60052-1), in accordance with the manufac-
turer’s protocol. Post-transformation, the cells were recovered in 1 ml 
recovery medium (Invitrogen, catalogue no. 12648010) with shaking at 
37 °C for an hour, after which the transformants were grown in 50 ml of 
Lysogeny Broth (LB) containing 50 μg ml−1 of kanamycin (LB-Kan) until 
reaching an optical density of 0.6–1.0. The cells were then pelleted and 
resuspended in LB-Kan containing 15% glycerol for storage at −80 °C. 
Aliquots of the resulting metagenomic libraries were plated on LB-Kan 
plates for titration; successful insert ligation was assessed by colony 
polymerase chain reaction (PCR). The libraries were plated on LB plates 
with one of the 17 antibiotics listed in Supplementary Table 6 and incu-
bated at 37 °C for 24–48 h. For each antibiotic screen, we also plated  
E. cloni 10-G ELITE cells with unmodified pZE21, as the vector-only con-
trol, to ensure adequate antibiotic selection pressure. The surviving 
colonies were grown in LB-Kan, and the resistance-conferring plasmids 
were extracted using the QIAprep Spin Miniprep kit (QIAGEN, cata-
logue no. 27104) and sequenced using the NovaSeq 6000 platform, as 
described above. Reads mapping to E. coli or the pZE21 backbone were 
removed. The remaining reads were assembled into contigs using PAR-
FuMS (v.1.1.0)44, and the encoded ORFs were determined with Prodigal 
(v.2.6.3)82. The annotation of ORFs took place in a stepwise manner: 
first, ORFs were matched against BLAST-based ARG databases (CARD49, 
ResFinder83 and AMRFinder-Prot84) with high identity (>95%) and cover-
age (>95%), then the remaining ORFs were annotated via HMM-based 
ARG databases (Resfams85, AMRFinder-fam84). This process yielded a 
total of 2,049 unique ARGs. To determine the similarity of the identi-
fied ARGs to those within existing ARG databases, we first used BLASTp 
within blast-plus (v.2.11.0; -matrix BLOSUM45) to find the best match 
for each ARG to the joint entries within CARD (v.3.2.2)49 and the NCBI 
antimicrobial resistance (AR) gene catalogue (v.2022-04-04.1)50. We 
then performed a global sequence alignment between each ARG and 
the corresponding best database hit using the needle algorithm within 
EMBOSS (v.6.6.0; -gapopen 10, -gapextend 0.5) to obtain the percent 
sequence identity. The percent identity to the top hits within the NCBI 
nr database were calculated in an identical manner. Finally, the anti-
biotic class assignments to the functionally screened ARGs were made 
based on their top hits to the CARD and NCBI gene catalogue entries.

Resistome profiling
The relative abundances of ARGs in stool metagenomic datasets were 
calculated using ShortBRED (v.0.9.4)86. We first curated a reference ARG 
set that included the 2,049 functionally screened ARGs from this study, 
as well as 17,292 ARGs identified through functional metagenomics in 
our previous studies44–46,62,87–92 and the ARGs within CARD (v.3.2.2)49 and 
the NCBI AR gene catalogue (v.2022-04-04.1)50, yielding a total of 31,333 
reference protein sequences. From this reference set, we generated an 
ARG marker sequence database using shortbred_identify.py (--clustid 
0.95) and the UniRef90 set (downloaded 29 May 2022)93. Through 
this process, we generated a comprehensive ARG marker database 
containing 22,637 markers for 9,293 unique ARG families. The function-
ally screened gene sets and the resulting ARG marker sequence data-
base are available at https://github.com/dantaslab/DOME/tree/main/ 
ShortBRED. This marker database was subsequently used to quantify 
ARG relative abundances using shortbred_quantify.py with default 
settings. The resistome richness was calculated using the specnumber 
function within the R package vegan. As before, the Bray–Curtis dis-
similarity was calculated using the vegdist function (method = ‘bray’). 
The Pearson correlation coefficients between the relative abundances 
of ARG pairs in cow samples were calculated using the rcorr command 
within the R package Hmisc R package (v.4.8.0). The Spearman correla-
tion coefficients between ARGs and genera in the cow stool samples 
were calculated using the cor function (method = c(‘spearman’)) within 
the stats package (v.4.1.3).

Assessment of mobile genetic elements
We followed a previously established protocol for the identification 
of horizontally disseminating genomic regions57. We used BLASTn 
(blast-plus) to align contigs of the cow high- and medium-quality 
MAGs to those of farmers in an all-versus-all manner. The pairwise 
average nucleotide identities (ANIs) were calculated for all MAG pairs 
using FastANI (v.1.33)94. Instances of horizontal transfer were defined 
as ≥500-bp fragments present with >99% identity in MAG pairs with 
ANI < 95% and/or classified as disparate species (through GTDB-Tk).

Statistical analysis
The subsamples in the rarefaction analyses were compared using 
Dunn’s test through the dunnTest function within the R package FSA 
(v.0.9.4). Community composition (taxonomic and ARG) differences 
were determined using PERMANOVA in R with the adonis2 function 
of vegan. Differences in Shannon diversity, richness (taxonomic and 
ARG), pairwise Bray–Curtis distances and amino acid identities were 
calculated using the Wilcoxon rank-sum test with the compare_means 
function within the R package ggpubr (v.0.6.0). Differentially abundant 
taxa, microbial pathways, ARGs and antibiotic classes were determined 
using MaAsLin295, setting groups (that is, farmer versus non-farmer) as 
the fixed effect, and subject ID, sampling seasons and collection sites 
as random effects. In all cases, P values were corrected for multiple 
hypotheses using the Benjamini–Hochberg method via the p.adjust 
command (method = ‘BH’) in the stats R package (v.4.1.3).

To test the enrichment of lineage co-occurrence events between 
cow and farmer stool samples, we first calculated the numbers of 
possible farmer–cow and non-farmer–cow sample pairs. We then dis-
tributed the total number of observed lineage-sharing events between 
farmers and non-farmers using the choices method within the Python 
random module, setting the calculated total possible sample pairs as 
weights. We repeated this process 10,000 times, resulting in a theoreti-
cal distribution of lineage co-occurrences, allowing us to calculate a 
z-score for the observed number of lineage co-occurrences using the 
statistics module in Python. The z-score for lineage-sharing events 
between farmers and cows from the same farms relative to the pairs 
from disparate farms was calculated in a similar fashion. The calcu-
lated z-scores were used to obtain P values using the pnorm function 
(lower.tail = FALSE) within the stats package. As before, the Benjamini– 
Hochberg method was used to correct for multiple hypotheses. Finally, 
to test for the enrichment of ARGs within the horizontally disseminat-
ing regions, we ran a χ2 test using the chi2_contingency command within 
scipy.stats (v.1.11)96.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
All 16S and shotgun sequencing data pertaining to this study are avail-
able from the NCBI SRA under BioProject ID PRJNA964705. The data-
bases used in this study include the SILVA database (v.138.1) (https://
www.arb-silva.de/documentation/release-1381/), DeconSeq (v.4.3; 
-dbs hsref38,cow) (https://deconseq.sourceforge.net/), shortBRED 
(v.0.9.4) (https://github.com/biobakery/biobakery/wiki/shortbred), 
CARD (v.3.2.2) (https://card.mcmaster.ca/download), NCBI AR gene 
catalogue (v.2022-04-04.1) (https://www.ncbi.nlm.nih.gov/patho-
gens/refgene/#), UniRef90 (v.2022-05-29) (https://ftp.uniprot.org/
pub/databases/uniprot/uniref/uniref90) and BLASTn (blast-plus) 
(https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.
html#downloadblastdata). Source data are provided with this paper.

Code availability
The code for all computational analyses is available at https://github.
com/dantaslab/DOME/tree/main/Scripts.
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Extended Data Fig. 1 | Genus-level richness of nasal and faecal samples. 
Genus-level richness of the cow, farmer, and non-farmer nasal (a) and faecal  
(b) microbiomes across seasons. Boxplots show median (center line), quartiles 
(box limits), and 1.5x interquartile range (whiskers). Dots correspond to 

individual samples. Half-violins show the data distribution. P values were 
calculated using the two-tailed Wilcoxon rank-sum test, with subsequent 
Benjamini-Hochberg correction for multiple hypotheses.
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Extended Data Fig. 2 | Microbial families differentially abundant in nasal 
samples. Microbial families with significant (P < 0.05) differential abundances 
between farmer (n = 145) and non-farmer (n = 103) nasal microbiomes are 
indicated. For each family, when significant, the corresponding coefficient in cow 

samples (n = 363) relative to those of non-farmers is also shown. Points denote 
mean coefficients; whiskers correspond to standard error. Enrichment tested 
using MaAsLin 2 (see Methods), Benjamini-Hochberg correction for multiple 
hypotheses.
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Extended Data Fig. 3 | Principal coordinate analysis of Bray-Curtis 
dissimilarities. Analysis consists of genus (a–h) and species (i-l) compositions  
of human fecal samples across seasons. Taxonomic profiling is based on 16S  

(a-d) and shotgun metagenomic (e-l) sequencing data P values were calculated  
using PERMANOVA and adjusted for multiple hypotheses using the  
Benjamini-Hochberg method.
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Extended Data Fig. 4 | Average fecal Bray-Curtis distance of farmers and 
non-farmers to cows residing in the same or different collection site. Beta 
diversities are based on genus (a) or resistome (b) compositions. Boxplots 
show median (center line), quartiles (box limits), and 1.5x interquartile range 

(whiskers). Dots correspond to individual samples. Half-violins show the data 
distribution. P values were calculated using the two-tailed Wilcoxon rank-sum 
test, with subsequent Benjamini-Hochberg correction for multiple hypotheses. 
No significant differences (P < 0.05) were identified.
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Extended Data Fig. 5 | Differential abundances of microbiome characteristics 
across farmers and non-farmers. Species (a), genera (b), and microbial 
pathways (c) with significant (P < 0.05) differential abundances between farmer 
(n = 134) and non-farmer (n = 95) fecal microbiomes are indicated. Points denote 

mean coefficients; whiskers correspond to standard error. Enrichment tested 
using MaAsLin 2 (see Methods), Benjamini-Hochberg correction for multiple 
hypotheses.
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Extended Data Fig. 6 | Total ARG relative abundances of cow, farmer, and 
non-farmer fecal microbiomes across seasons. Boxplots show median 
(center line), quartiles (box limits), and 1.5x interquartile range (whiskers). 

Dots correspond to individual samples. Half-violins show the data distribution. 
P values were calculated using the two-tailed Wilcoxon rank-sum test, with 
subsequent Benjamini-Hochberg correction for multiple hypotheses.
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Extended Data Fig. 7 | ARGs overrepresented in the cow gut. ARGs enriched (P < 0.05) in the cow gut resistome (n = 330) relative to that of humans (n = 229). The 
enrichment coefficients were determined through MaAsLin2 (see Methods), with Benjamini-Hochberg correction for multiple hypotheses. The ARGs are colored 
according to the corresponding antibiotic classes.
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Extended Data Fig. 8 | Farmer and non-farmer gut ARG richness in spring. 
The analysis of richness involved only ARGs correlated with genera that i) 
are enriched in the farmer and cow nasal microbiomes relative to that of 
non-farmers, and ii) represent the microbial lineages cooccurring the farmer 

and cow guts. Boxplots show median (center line), quartiles (box limits), and 
1.5x interquartile range (whiskers). Dots correspond to individual samples. 
Half-violins show the data distribution. The P value was calculated using the 
two-tailed Wilcoxon rank-sum test.
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Extended Data Fig. 9 | Rarefaction analysis for 16S rRNA sequencing. Analysis 
consisted of fecal (a,c,e) and nasal (b,d,f) samples of cows (a, b), farmers  
(c, d), and non-farmers (e, f). The analysis was based on genus richness. Boxplots 
show median (center line), quartiles (box limits), and 1.5x interquartile range 

(whiskers). Dots correspond to individual subsamples. Half-violins show the data 
distribution. The differences among subsamples were tested for significance 
using Dunn’s test, and the P values adjusted for multiple hypotheses using 
Benjamini-Hochberg. ns, not significant.
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Extended Data Fig. 10 | Rarefaction analysis for shotgun sequencing. Analysis 
consisted of cow (a), farmer (b), and non-farmer (c) fecal samples. The analysis 
was based on ARG richness. Boxplots show median (center line), quartiles  
(box limits), and 1.5x interquartile range (whiskers). Dots correspond to 

individual subsamples. Half-violins show the data distribution. The differences 
among subsamples were tested for significance using Dunn’s test, and the  
P values adjusted for multiple hypotheses using Benjamini-Hochberg.  
ns, not significant.
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